
CSE30 | Midterm

Yee Fall '98

Name / Login: Answer Key

There are a total of 16 questions on 14 pages. There are 102 points possible. It is unlikely that you
will �nish the entire exam. Wait until the instructor has passed out exams to everybody before you start.
Advice: skim through the entire test to determine which of the problems you can solve quickly and work on
those �rst, rather than getting stuck on a hard problem early and wasting too much of your time on it.

When you can start, you should �rst make sure that you have all the pages, and write your name and
your login name at the top of �rst page, and your login name on the top of all subsequent pages. Pages of
this exam will be separated and graded separately | if you fail to write your name at the top of a page,
you will not receive credit for answers on that page. Write clearly: if we cannot read your handwriting or
your pencil smudges, you will not properly get credit for your answers.

This exam is closed book. You are allowed a single sheet of notes You may look at your own notes all
you want. You may not look at anybody else's books, notes, exam, or otherwise obtain help from another
human being, arti�cial intelligence, metaphysical entity, or space alien. If we see your eyeballs wandering,
you will get a zero for the exam. If you must look away from your exam/notes to think, look up at the
ceiling / into space or close your eyes.

No electronic computation aids are allowed.

Login: Answer Key CSE30 F'98, Midterm

1. [Number representation] Given a number n represented as string of k digits d0; d1 : : : dk�1 in base
b, where 0 � dj < b for j = 0; : : : ; k � 1, written as n = dk�1dk�2 : : : d2d1d0 (b). (1) What is n written in a

base-free mathematical notation (i.e., a summation). (2) Also write down the integer part of n=b as a string
of digits.
(4pt)

Ans:

(1) The number is

n =

k�1X

i=0

dib
i

(2) When this number is divided by b, it is just bn=bc = dk�1dk�2 : : : d2d1 (b), i.e., we omit the last
digit.

2

CSE30 F'98, Midterm Login: Answer Key

2. [Base Conversion] Perform the following base conversions. For bases larger than 16(10), the individual
digits are written as parenthesized base 10 numbers, e.g., (17)(30)(72) = 17(10) � 72(10) + 30(10).

1: CAFEBABE(16) =?(2)

2: 47284(9) =?(3)

3: (69)(3)(27)(81) =?(3)

4: 2011221112(3) =?(27)

5: 2767357255(8) =?(16)

(15pt, 3 each)

Ans:

1: CAFEBABE(16) = 1100 1010 1111 1110 1011 1010 1011 1110(2)

2: 47284(9) = 11 21 02 22 11(3)

3: (69)(3)(27)(81) = 2120 0010 1000(3)

4: 2 011 221 112(3) = (2)(4)(25)(14)(27)

5:

27673757255(8) = 010 111 110 111 011 111 101 111 010 101 101(2)

= 0 1011 1110 1110 1111 1101 1110 1010 1101(2)

= BEEFDEAD(16)

3

Login: Answer Key CSE30 F'98, Midterm

3. [Micro-architecture] What is the purpose of a cache? Explain what it is, how it achieves its purpose,
and what factors in
uence how well it achieves this.
(5pt)

Ans:

A cache improves overall performance of the computer by transparently making memory accesses
faster most of the time. It is fast memory that is located closer to the processor, and contains copies
of portions of main memory contents. When the processor attempts to access cached memory, a cache

hit occurs and the access is fast, since the memory access does not have to travel to the DRAM over
the system bus; when the processor attempts to access memory that has not been cached, a cache

miss occurs and the cache forwards the access to the DRAM, saving (caching) a copy of the result for
subsequent use.

If p is the probability of a cache hit, then the expected memory access time is p � thit+(1�p) �tmiss;
typically caches are designed to have a very high p (depends on size and program mix), e.g., 0.99,
and thit << tmiss, so including caches greatly improves overall performance of computers.

Factors that in
uence how well the cache speeds up programs include the size of the cache, the
cache response times, and the program mix. By implementing the cache from faster (and more
expensive) memory would improve the thit value. Vector programs would not bene�t much from a
data cache.

4. What is the name of your favorite �lm?
(2pt)

Ans:

Anything is �ne. Mine is Cassablanca.

4

CSE30 F'98, Midterm Login: Answer Key

5. [Number representation] Compute the two's complement of the following numbers stored in 16-bit
registers:

1: 0x5141

2: 0x8576

Negate the following numbers stored in 16-bit registers:

3: 0xF35

4: 0xCAFE

In all 4 cases, mark which results would be interpreted as a negative number when interpreted as a 16-bit
two's complement number.
(8pt, 2 each)

Ans:

Taking the two's complement of a number is the same as negating it.

1: 0x5141 ! 0xAEBF (negative)

2: 0x8576 ! 0x7A8A

3: 0xF35 ! 0xF0CB (negative)

4: 0xCAFE ! 0x3502

6. [Number representation] Suppose you have a number in a 32-bit register, and its hexidecimal
representation is 0x8000 0000. Is this number positive or negative when viewed as a two's complement
number? What happens when you negate it? Is the result of the negation positive or negative when viewed
as a two's complement number?
(7pt)

Ans:

The number is negative when viewed as a two's complement number, since the high-order bit
is set. The result from negating it is also 0x80000000. An over
ow occurred during the negation,
because the result can not be represented as a 32-bit two's complement number (it's too big). The
result would be interpreted as the same as the original negative number.

5

Login: Answer Key CSE30 F'98, Midterm

7. [One Instruction Computer] De�ne the subge instruction.
(3pt)

Ans:

subge a,b,c

is equivalent to the following C-like pseudo-code:

mem[a] = mem[a] - mem[b];

if (mem[a] >= 0) pc = c;

else pc = pc + 1;

6

CSE30 F'98, Midterm Login: Answer Key

8. [One Instruction Computer] Covert the following OIC program to hexidecimal, machine-code
notation. Your translation must be acceptable to the oic program when run as

oic -e 0x100 your�le.oic
A: .equ 0x0

B: .equ 0x1

C: .equ 0x2

D: .equ 0x3

out: .equ 0x4

.text

.org 0x100

main: subge out,out,next

subge out,A,next

subge out,B,next

subge out,C,next

subge D,zero,done

subge D,one,main

done: subge tmp,tmp,done

tmp: .word 0

one: .word 1

zero: .word 0

(7pt)

Ans:

0x100 ; .org 0x100

0x000400040101 ; 0x100 main: subge out,out,next

0x000400000102 ; 0x101 subge out,A,next

0x000400010103 ; 0x102 subge out,B,next

0x000400020104 ; 0x103 subge out,C,next

0x000301090106 ; 0x104 subge D,zero,done

0x000301080100 ; 0x105 subge D,one,main

0x010701070106 ; 0x106 done: subge tmp,tmp,done

0x000000000000 ; 0x107 tmp: .word 0

0x000000000001 ; 0x108 one: .word 1

0x000000000000 ; 0x109 zero: .word 0

7

Login: Answer Key CSE30 F'98, Midterm

9. [Macro Assembly] What's the di�erence between using macros and subroutines?
(4pt)

Ans:

Macros expand \in place" | the macro bodies take the place of each invocation. Unlike sub-
routines, no \call" sequence is needed, so the use of macros is very eÆcient. They do, however, use
up more space in memory. For each subroutine, there's only one copy of it in memory. Calling a
subroutine is more expensive from the point of view of execution time, but cheaper from the point of
view of instruction memory space consumed.

Subroutines also permit the implementation of recursive algorithms directly. Macro assembly
languages do not allow this, since the recursion depth is input dependent, and the macro would just
recursively expand inde�nitely, until all of memory is consumed by the macro body.

8

CSE30 F'98, Midterm Login: Answer Key

10. [Macro Assembly] Expand the macros in the following macro assembly program. Do not convert to
machine code. Use extra space on next sheet if needed.

zero: .macro loc

subge loc, loc, next

.endmacro

move: .macro src, dst

subge dst, dst, next

subge tmp, tmp, next

subge tmp, src, next

subge dst, tmp, next

.endmacro

call: .macro entrypt, retpt

subge retpt, retpt, next

subge retpt, L0, next

subge tmp, tmp, entrypt

.data

L0: .word neg(triple(tmp,tmp,L1))

.text

L1:

.endmacro

add2: .macro val, var

subge tmp, tmp, next

subge tmp, val, next

subge var, tmp, next

.endmacro

A: .equ 0

B: .equ 1

C: .equ 2

D: .equ 3

X: .equ 0x200

Y: .equ 0x201

prod: .equ 0x202

mult: .equ 0x203

rmult: .equ 0x223

.org 0x100

main: zero sum

move A, X

move B, Y

call mult, rmult

move prod, sum

move C, X

move D, Y

call mult, rmult

add2 prod, sum

quit: subge tmp, tmp, quit

sum: .word 0

tmp: .word 0

(9pt)

Ans:

9

Login: Answer Key CSE30 F'98, Midterm

A: .equ 0

B: .equ 1

C: .equ 2

D: .equ 3

X: .equ 0x200

Y: .equ 0x201

prod: .equ 0x202

mult: .equ 0x203

.org 0x100

main: subge sum, sum, next

subge X, X, next

subge tmp, tmp, next

subge tmp, A, next

subge X, tmp, next

subge Y, Y, next

subge tmp, tmp, next

subge tmp, B, next

subge Y, tmp, next

subge rmult, rmult, next

subge rmult, apple, next

subge tmp, tmp, mult

.data

apple: .word neg(triple(tmp,tmp,orange))

.text

orange:

subge sum, sum, next

subge tmp, tmp, next

subge tmp, prod, next

subge sum, tmp, next

subge X, X, next

subge tmp, tmp, next

subge tmp, C, next

subge X, tmp, next

subge Y, Y, next

subge tmp, tmp, next

subge tmp, D, next

subge Y, tmp, next

subge rmult, rmult, next

subge rmult, pear, next

subge tmp, tmp, mult

.data

pear: .word neg(triple(tmp,tmp,peach))

.text

peach:

subge tmp, tmp, next

subge tmp, prod, next

subge sum, prod, next

quit: subge tmp, tmp, quit

sum: .word 0

tmp: .word 0

10

CSE30 F'98, Midterm Login: Answer Key

11. [One Instruction Computer] Write an oic assembly language program to square a non-
negative number. The input number is at location 0, The output should be at location 1. The program
should start at location 0x100.
(8pt)

Ans:

; negsum = 0;

; for (negx = -N; negx < 0; negx++) negsum -= N;

; out = -negsum;

N: .equ 0

out: .equ 1

.org 0x100

main: subge negsum, negsum, next

subge negx, negx, next

subge negx, N, next ; negx = -N

subge tmp, tmp, test

loop: subge negsum, N, next ; negsum -= N

subge negx, neg1, next ; negx++

test: subge tmp, negx, done ; 0 - negx >= 0 or 0 <= negx

subge tmp, tmp, loop

done: subge out, out, next

subge out, negsum, next

endloop subge tmp, tmp, endloop ; end of program

negx: .word 0

negsum: .word 0

tmp: .word 0

neg1: .word -1

11

Login: Answer Key CSE30 F'98, Midterm

12. [One Instruction Computer] Write an oic assembly language program to copy memory from
one array (src) to another (dst). The number of elements to copy is given in memory location N.
(8pt)

Ans:

subge i, i, next

subge i, N, next ; i = -N

subge i, zero, done ; i - 0 >= 0 or i >= 0

loop: subge dst, dst, next ; move macro

subge tmp, tmp, next ; but addrs changes

l2: subge tmp, src, next ; as pgm executes

l3: subge dst, tmp, next

subge loop, loopMod, next ; modify above code

subge l2, l2Mod, next

subge l3, l3Mod, next

test: subge i, negone, done ; i = (i + 1) >= 0

subge tmp, tmp, loop

done: subge tmp, tmp, done

i: .word 0

tmp: .word 0

loopMod: .word neg(triple(1,1,0))

l2Mod: .word neg(triple(0,1,0))

l3Mod: .word neg(triple(1,0,0))

negone: .word -1

zero: .word 0

13. [MIPS] What are the MIPS t and s registers used for? In what way are they di�erent from
each other?
(5pt)

Ans:

Both the t and s registers are for temporaries. The t registers are caller-saved registers,
since by convention a subroutine is allowed to use them. The s registers are callee-saved

registers; a routine can call a subroutine and expect that these registers' contents will be
preserved when the subroutine returns.

12

CSE30 F'98, Midterm Login: Answer Key

14. [RISC and CISC] Give an example of a processor with a RISC architecture and an example
of processor with a CISC architecture.
(3pt)

Ans:

The MIPS architecture is a RISC, and the R2000 is an implementation of that architecture;
a 486, Pentium, Pentium II are processors that implements the x86 (or IA-32) architecture,
which is a CISC architecture.

15. [Converting C to MIPS assembly] Convert the following C code to MIPS assembly. You
may assume that the C variables are in the correspondingly named registers. Indicate where the code
that preceeds the loop, the code that comprise the body of the loop, and the code that follows the
loop would be located in your equivalent MIPS code. EÆciency matters.

int t0, t1, *t2;

code that precedes loop

for (t0 = 0, t2 = &globalIntArray[0]; t0 <= t1; t0 += 2, t2++) f
loop body

g
code that follows loop

(5pt)

Ans:

code that precedes loop

li $t0,0

la $t2,globalIntArray

b test

loop: loop body

add $t0,$t0,2

add $t2,$t2,4

test: ble $t0,$t1,loop

done: code that follows loop

13

Login: Answer Key CSE30 F'98, Midterm

16. [Stack Frames] Write the MIPS assembly language equivalent for the following function:

int fib(int n)

f
if (n <= 1) return 1;

else return fib(n-1) + fib(n-2);

g
(9pt)

Ans:

fib: sub $sp, $sp, 16

sw $fp, 4($sp)

add $fp, $sp, 16

sw $ra, -8($fp)

bgt $a0, 1, rec fib

li $v0, 1

b fib done

rec fib: sw $a0, 0($fp)

sub $a0, $a0, 1

jal fib

sw $v0, -4($fp)

lw $a0, 0($fp)

sub $a0, $a0, 2

jal fib

lw $a0, -4($fp)

add $v0, $v0, $a0

fib done: lw $ra, -8($fp)

lw $fp, 4($sp)

add $sp, $sp, 16

jr $ra

14

