
CSE30 | Final

Yee Fall '98

Name and last two letters of login: Answer Key

There are a total of 18 questions on 12 pages. There are 102 points possible. It is unlikely that you will
�nish the entire exam. Wait until the instructor has passed out exams to everybody and tells you to start
before opening the exam. Gratuitous advice: skim through the entire test to determine which of the problems

you can solve quickly and work on those �rst, rather than getting stuck on some problem early and wasting

too much of your time on it. Also note how much each problem is worth when you're optimizing the use of

your time.

When you can start, you should �rst make sure that you have all the pages, and write your name and
your login name at the top of �rst page, and PRINT IN CAPITAL LETTERS the last two letters

of your login name on the top of all subsequent pages. This exam will be unstapled and the pages
graded separately | if you fail to write the last two letters of your login name at the top of a page, you will
not receive credit for answers on that page. Write clearly: if we cannot read your handwriting or your
pencil smudges, you will not get credit for your answers.

This exam is closed book. You are allowed only the Larus handout and two sheets of notes. You may
look at your own notes all you want. You may not look at anybody else's notes, exam, or otherwise obtain
help from another human being, arti�cial intelligence, metaphysical entity, or space alien. Please refrain
from using any ESP abilities that you may have. If we see your eyeballs wandering, you will get a zero for
the exam. If you must look away from your exam/notes to think, look up at the ceiling or into space, or
close your eyes.

No electronic computation aids are allowed.

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

Score

Possible 3 3 6 5 6 4 5 5 1 8 10 4 8 8 5 10 10 1 102

Login (print): Answer Key CSE30 F'98, Final

1. [Number representation] Given a number n represented as string of k digits dk�1; dk�2; : : : ; d0 in
base b, where 0 � dj < b for all j = 0; : : : ; k � 1, written as n = dk�1dk�2 : : : d2d1d0 (b). (1) What is n

written in a base-free mathematical notation (i.e., a summation of the variables). (2) Also write down the
integer part of n=b2 as a string of digits in whatever base you like.

(3pt)

Ans:

(1) The number is

n =

k�1X

i=0

dib
i

(2) It is easiest to continue using base b. The result is just bn=b2c = dk�1dk�2 : : : d2 (b), i.e., we omit
the last two digits.

2. [Number representation] Given a number n � 0 in a MIPS machine register $t0, how do we eÆciently
compute (1) n mod 16? (2) b n

32
c (the integer part of the division)?

(3pt)

Ans:

(1) For n mod 16, we use the instruction and $t1, $t0, 15, and
(2) for b n

32
c, we use the instruction srl $t1, $t0, 5.

2

CSE30 F'98, Final Login (print): Answer Key

3. [Base Conversion] Perform the following base conversions. For bases larger than 16(10), the individual
digits are written as parenthesized base 10 numbers, e.g., (17)(30)(72) = 17(10) � 72(10) + 30(10).

1: CAFEBEEF(16) =?(2)

2: (53)(13)(28)(81) =?(3)

3: 27673757255(8) =?(16)

(6pt, 2 each)

Ans:

1: CAFEBEEF(16) = 1100 1010 1111 1110 1011 1110 1110 1111(2)

2: (53)(13)(28)(81) = 1222 0111 1001(3)

3:

27673757255(8) = 010 111 110 111 011 111 101 111 010 101 101(2)

= 0 1011 1110 1110 1111 1101 1110 1010 1101(2)

= BEEFDEAD(16)

4. [Assembler Directives] What does the .align MIPS assembly directive do?

(5pts)

Ans:

The .align directive aligns memory. It takes a numeric argument n, and forces the next data element
to start at an address that is divisible by 2n. Equivalently, the address of the next data element will
have all zeros in the low order n bits.

3

Login (print): Answer Key CSE30 F'98, Final

5. [One Instruction Computer] Covert the following OIC program to hexidecimal, machine-code nota-
tion. Your translation must be acceptable to the oic program when run as

% oic -e 0x100 your�le.oic

You may write the answer next to the listing if that helps.

A: .equ 0x0

B: .equ 0x1

C: .equ 0x2

D: .equ 0x3

out: .equ 0x4

.text

.org 0x100

main: subge out,out,next

subge out,A,next

subge out,B,next

subge C,zero,ldone

subge C,one,main

ldone: subge D,zero,done

subge D,one,main

done: subge tmp,tmp,done

tmp: .word 0

one: .word 1

zero: .word 0

(6pt)

Ans:

0x100 ; .org 0x100

0x000400040101 ; 0x100 main: subge out,out,next

0x000400000102 ; 0x101 subge out,A,next

0x000400010103 ; 0x102 subge out,B,next

0x0002010a0105 ; 0x103 subge C,zero,ldone

0x000201090100 ; 0x104 subge C,one,main

0x0003010a0107 ; 0x105 ldone: subge D,zero,done

0x000301090100 ; 0x106 subge D,one,main

0x010801080107 ; 0x107 done: subge tmp,tmp,done

0x000000000000 ; 0x108 tmp: .word 0

0x000000000001 ; 0x109 one: .word 1

0x000000000000 ; 0x10a zero: .word 0

4

CSE30 F'98, Final Login (print): Answer Key

6. [Macro Assembly] What are the di�erences between using macros and using subroutines? Which is
better? For what occasions?

(4pt)

Ans:

Macros expand \in place" | the macro bodies take the place of each invocation (1). Unlike subrou-
tines, no \call" sequence is needed, so the use of macros is very eÆcient (1). They do, however, use
up more space in memory (1). For each subroutine, there's only one copy of it in memory. Calling a
subroutine is more expensive from the point of view of execution time, but cheaper from the point of
view of instruction memory space consumed.

Subroutines also permit the implementation of recursive algorithms directly (1). Macro assembly
languages do not allow this, since the recursion depth is input dependent, and the macro would just
recursively expand inde�nitely, until all of memory is consumed by the macro body.

7. [RISC and CISC] If RISC processor instructions are simpler and, in order to perform some compu-
tation, more instructions must be executed, why would running a program on a RISC processors be faster
than on a CISC processor?

(5pts)

Ans:

The processor design for supporting those simpler instructions is also simpler, so RISC processors can
run at a higher clock rate than CISC processors (3). Furthermore, the number of instructions per
cycle can be higher with simpler, easier-to-pipeline instructions (2). So even though the total number
of instructions that need to be executed is higher, the faster execution of the individual instructions
more than compensate, resulting in faster overall execution time.

5

Login (print): Answer Key CSE30 F'98, Final

8. [Register usage convention] What is the MIPS calling convention and register usage convention?

(5pts)

Ans:

When making a function call, the $t are caller-saved (1pt). The called function may overwrite their
contents as needed. The $a registers (1) and the $v registers (1) are similarly caller-saved. The
$s registers are callee-saved (1), so that the calling function may rely on those values remaining
unchanged across the call. The $sp and $fp registers are also similarly callee-saved. The $ra register
holds the return address of a call. Leaf function need not do anything special, but non-leaf functions
must save their $ra values prior to calling another routine. (1 if any of these are discussed.)

9. [Multiple choice] When you go to bed at night, you

1: give thanks that you're a Computer Science major,

2: give thanks that you're not an English major,

3: worry about whether your multi-threaded program will deadlock,

4: wonder what is \deadlock",

5: think about how to speed up your latest program,

6: wonder how does \bit-slicing" works,

7: worry about your CSE 30 grade,

8: wish you had a BFG2000 to use on your professor, or

9: other (specify).

(1pts)

Ans:

Anything is okay.

6

CSE30 F'98, Final Login (print): Answer Key

10. [Converting C to MIPS assembly] Convert the following C code to MIPS assembly. You may
assume that the C variables are in the correspondingly named registers. Indicate where the code that
preceeds the loop, the code that comprise the body of the loop, and the code that follows the loop would be
located in your equivalent MIPS code. EÆciency is very important. You can use any of the $t registers not
already mentioned to hold temporary values.

int t0, t1, *t2, t3;

code that precedes loop

for (t0 = 0, t2 = &globalIntArray[0], t3 = 0; t0 <= t1; t0 += 2, t2++) f
t3 += 96 * *t2;

g
code that follows loop

(8pt)

Ans:

code that precedes loop

move $t0, $zero

la $t2,globalIntArray

move $t3, $zero

b test # test at bottom (4pts)

loop: lw $t9, 0($t2)

sll $t8, $t9, 6 # 26 = 64
sll $t9, $t9, 5 # 25 = 32
add $t9, $t9, $t8 # 64 + 32 = 96 (5pts)

add $t3, $t3, $t9

add $t0,$t0,2

add $t2,$t2,4

test: ble $t0,$t1,loop

code that follows loop

7

Login (print): Answer Key CSE30 F'98, Final

11. [Stack Frames] Write the MIPS assembly language equivalent for the following function:

int flab(unsigned int n)

f
if (n <= 3) return 2 * n;

else return 3 * flab(n-1) + flab(n-2) + flab(n-3);

g

(10pt)

Ans:

flab: sub $sp, $sp, 16

sw $fp, 4($sp)

add $fp, $sp, 16

sw $ra, -8($fp)

bgt $a0, 3, rec flab

sll $v0, $a0, 1

b flab done

rec flab: sw $a0, 0($fp)

sub $a0, $a0, 1

jal flab

sll $v1, $v0, 1

add $v0, $v0, $v1

sw $v0, -4($fp)

lw $a0, 0($fp)

sub $a0, $a0, 2

jal flab

lw $a0, -4($fp)

add $v0, $v0, $a0

sw $v0, -4($fp)

lw $a0, 0($fp)

sub $a0, $a0, 3

jal flab

lw $a0, -4($fp)

add $v0, $v0, $a0

flab done: lw $ra, -8($fp)

lw $fp, 4($sp)

add $sp, $sp, 16

jr $ra

(5 for getting the stack frames right, 5 for getting the recursion right.)

8

CSE30 F'98, Final Login (print): Answer Key

12. [Pipelines] Give the stages of the MIPS R2000 pipeline, describe what they are, and give details on
what would occur in the various staged when executing the

lw $t0, 12($t1)

instruction.

(4pts)

Ans:

The MIPS R2000 pipeline has 5 stages. They are IF, RD, EX, MEM, and WR. The IF or Instruction
Fetch stage fetches the instruction from cache and starts the decoding process. In the RD cycle,
the instruction's register argument are read from the register �le { latched as inputs to the ALU. In
the example instruction's case, the contents of $t1 is sent to the ALU, as well as the o�set value of
12. In the EX stage, the ALU operation occurs. In the example instruction, the addition of 12 and
the contents of $t1 occurs to compute the address from which the memory load will occur. In the
MEM stage, memory reads and writes occur. In the example, the ALU's result is sent to the cache
as a memory address, which responds with the word value stored there. In the WR stage, the result
obtained from the cache is written to the register �le as $t0. (2 for naming the stages, 2 for describing
what occurs where.)

13. [Threads] What are the di�erences between kernel and user-level threads? De�ne what they are and
give their advantages and disadvantages.

(8pts)

Ans:

Kernel threads are virtual processors provided by the operating system. Context switches are \au-
tomatic" (2). Kernel threads can run simultaneously on several physical processors (2). The user of
kernel threads does not normally need to do anything to time share the processor if the number of
available physical processors is less than the number of threads. The kernel handles pre-emption.

User threads are also called coroutines or cooperative threads. The processor time is shared among
the threads, but typically threads must explicitly call a yield routine to give up the processor; if a
user thread blocks, e.g., due to I/O, all threads block (2). This means that programs using user-level
threads cannot e�ectively make use of a multi-processor system. User threads are cheaper during
context switches, since not all registers need to be saved | since using the yield routine would follow
the standard register usage convention, the caller-saved registers need not be saved/restored across
context swithces (2).

9

Login (print): Answer Key CSE30 F'98, Final

14. [Threads] Why are locks used even when non-preemptive user-level threads are used?

(8pts)

Ans:

Even though non-preemptive user-level threads can provide mutual exclusion by simply not yielding,
this causes problems. When no yielding is allowed for mutual exclusion, the lack of sharing of the
CPU means that there is no concurrency (4). By using locks, threads that need exclusion can still
yield, providing greater concurrency among the threads, and yet still maintain correctness (4).

(Additionally, there are modularity concerns, since a thread that should not yield due to exclusion
cannot call routines without knowing whether those routines will yield.)

15. [EÆciency] What is the best technique for speeding up programs? Why?

(5pts)

Ans:

Use a better algorithm (3). Using a better algorithm can speed up programs a lot more than by
other techniques (2): a factor of 100 to 10,000 is often achievable when an algorithm change results
in a runtime of O(n log n) instead of O(n2). Other techniques such as constant folding, common
subexpression elimination, dead code elimination, loop unrolling, bit-slicing, etc. can each account
for only a factor of 2 to 10.

10

CSE30 F'98, Final Login (print): Answer Key

16. [Bit manipulation] Suppose $gp contains the address of the following table:
addr in gp: .word 0x0000FFFF

.word 0xFF00FF00

.word 0x00FF00FF

.word 0xF0F0F0F0

.word 0x0F0F0F0F

.word 0x33333333

.word 0xCCCCCCCC

.word 0x55555555

.word 0xAAAAAAAA

.word 0xFFFF0000
Write an eÆcient version of the popcount function in MIPS assembly. Assume that multiply and remainder
calculations are too expensive. You are not required to use this table of values. (Hint: the entire function
can be done in 22 single-cycle instructions, including the return, if all accesses hit in the cache.)

(10pts)

Ans:

popcount: srl $v0, $a0, 1

lw $t0, 28($gp) # 0x55555555

and $v0, $v0, $t0 # basic shift

and $a0, $a0, $t0 # mask,

add $a0, $a0, $v0 # and add (8)

srl $v0, $a0, 2

lw $t0, 20($gp) # 0x33333333

and $v0, $v0, $t0

and $a0, $a0, $t0

add $a0, $a0, $v0

srl $v0, $a0, 4

add $a0, $a0, $v0 # masking after shift/add (1)

lw $t0, 16($gp) # 0x0F0F0F0F

and $a0, $a0, $t0

srl $v0, $a0, 8

add $a0, $a0, $v0

lw $t0, 8($gp) # 0x00FF00FF

and $a0, $a0, $t0

srl $v0, $a0, 16

add $v0, $a0, $v0

andi $v0, $v0, 0xFFFF # using and immediate (1)

jr $ra

11

Login (print): Answer Key CSE30 F'98, Final

17. [Bit Manipulation] Suppose we have 32 pairs of unsigned 2-bit numbers packed into four registers:
$t1 and $t0 contain the high and low order bits of the �rst numbers in the 32 pairs, and $t3 and $t2

contain the high and low order bits of the second numbers in the 32 pairs. Give the MIPS assembly language
instructions that computes the pairwise sums of these numbers, so that the bits of the results are stored in
$t6, $t5, and $t4 in decreasing order of signi�cance. You may use any of the other $t registers for scratch
values. Your code must correctly compute the sum. EÆciency is also very important.

(10pts)

Ans:

The bit sliced operations are:

and $t5, $t0, $t2

xor $t4, $t0, $t2

and $t6, $t5, $t1

xor $t5, $t5, $t1

and $t7, $t5, $t3

xor $t5, $t5, $t3

or $t6, $t6, $t7

Here, $t7 is a scratch register used to handle the carry out from the additions of the high order
bits. We know that bits in the same bit position in $t6 and $d7 cannot be set simultaneously, since
the largest numbers being added are 3 and 3.

18. [Extra Credit?] If a genie grants you one wish, what would you wish for?

(1pts)

Ans:

I'd wish for a genie who would grant me more wishes! (Anything is �ne.)

12

