
CSE30 | Final

Yee Fall '97

Name / Login: Answer Key

There are a total of 26 questions on 23 pages. There are 98 points possible from the

questions. Writing your login clearly on every page is worth two additional points.

If we have problems putting your exam back together because your written logins at the top

of each of the pages are hard to read, you lose these points. Yes, like in grade school, you

get points for penmanship.

It is unlikely that you will �nish the entire exam. Wait until the instructor has passed

out exams to everybody before you start. Advice: skim through the entire test to determine

which of the problems you can solve quickly and work on those �rst, rather than getting

stuck on a hard problem early and wasting too much of your time on it.

When you can start, you should �rst make sure that you have all the pages, and write

your name and your login name at the top of �rst page, and your login name on the top of

all subsequent pages. Pages of this exam will be separated and graded separately | if you

fail to write your name at the top of a page, you will not receive credit for answers on that

page. Write clearly: if we cannot read your handwriting or your pencil smudges, you will

not properly get credit for your answers.

This exam is open book, open notes, but not open people (no scalpels, please). You may

look at your own books and notes all you want. You may not look at anybody else's books,

notes, exam, or otherwise obtain help from another human being, arti�cial intelligence, or

space alien. If we see your eyeballs wandering, you will get a zero for the exam. If you must

look away from your exam/notes to think, look up into space.

No electronic computation aids are allowed.

Login: Answer Key CSE30 F'97, Final

1. [Base Conversion] Given a string of digits dk�1dk�2 : : : d2d1d0 in a certain base b,

where 0 � dj < b for j = 0; : : : ; k� 1 (usually written as dk�1dk�2 : : : d2d1d0 (b)), what is the

corresponding integer? (1) Write this in a mathematical notation. (2) Also write down this

number multiplied by b2 as a string of digits in base b.

(2pts)

Ans:

(1) The number is

k�1X

i=0

dib
i

and (2) b2 times this number is just dk�1dk�2 : : : d2d1d000 (b).

2. [Base Conversion] Perform the following base conversions.

1: 82743(9) =?(3)

2: BEEF DEAD(16) =?(8)

(3pts, 1.5 each)

Ans:

1: 82743(9) = 22 02 21 11 10(3)

2:

BEEF DEAD(16) = 1011 1110 1110 1111 1101 1110 1010 1101(2)

= 10 111 110 111 011 111 101 111 010 101 101(2)

= 27673757255(8)

2

CSE30 F'97, Final Login: Answer Key

3. [Micro-architecture] What are the di�erences between registers and cache memory?

Explain.

(2pts)

Ans:

Registers are very fast memory that may be operated upon directly by instructions.

Typically on RISC machines, ALU operations may only be performed on registers |

the instruction encoding allows 2 or 3 registers to be named. This necessarily implies

that there are very few registers compared to other kinds of memory, since the names

of 2 or 3 registers must �t inside of an instruction word (along with the op code and

immediate constants).

Cache memory are also very fast, but this memory is not directly addressable.

Instead, they are accessed as a side e�ect of accessing main memory (RAM), and the

cache operates transparently to speed up loads (lw) and stores (sw) (the latter only

if it is a write-back cache).

3

Login: Answer Key CSE30 F'97, Final

4. [Micro-architecture] Suppose we are building a computer system around a processor

\core" that is capable of running at 500 MHz. The processor cycle time is 1
500MHz

or 2nS

(nanoseconds). Suppose we can build a data cache that takes less than 2 nS to respond to a

read request, so a cache hit would not slow down the processor at all, and a main memory

that takes 100 nS or 50 cycles to similarly respond, forcing the processor to stall for those 50

cycles. We are considering a range of cache sizes in our design. (1) Suppose we chose a cache

size that would give a cache hit rate of 99%; what is the average memory access time? (2)

Suppose we save some money and reduce the size of the cache so that the hit rate would now

be just 90%. What is the average memory access time now? (3) Suppose we save yet more

money, and trim the cache so that the cache hit rate would only be 80%. What is the new

average memory access time? (These numbers provide a rough estimate of the performance

of the designs.)

(3pts)

Ans:

If p is the probability of a cache hit, then the expected memory access time is

p � thit + (1 � p) � tmiss. (1) At a hit rate of 99%, the expected time is 0:99 � 2 +

0:01 � 100 = 1:98 + 1 = 2:98 nS. (2) At a hit rate of 90%, the expected access time

is 0:9 � 2 + 0:1 � 100 = 1:8 + 10 = 11:8 nS. (3) At a hit rate of 80%, the expected

access time is 0:80� 2 + 0:2� 100 = 1:6 + 20 = 21:6 nS.

5. [Number representation] Suppose you had a computer with 48-bit words (e.g., our

One Instruction Computer). When using the two's complement representation, what is the

largest number that you can represent in a word? What is the smallest? Write these as

simple mathematical expressions.

(2pts)

Ans:

The largest is 247 � 1. The smallest is �247.

4

CSE30 F'97, Final Login: Answer Key

6. [One Instruction Computer] Convert the following subz program fragment to its

hexadecimal representation for our OIC simulator.

subz t,t,next

subz c,c,next

subz t,a,next

subz t,b,next

subz c,t,next

subz t,t,this

a: 0xc0de4beef

b: 0x314159265358

c: 0

t: 0

Assume that the �rst instruction will be in memory location 0. You do not need to add

comments to this code, but you should be explicit about how you assigned addresses and

how you arrived at your result. (Give the address of each instruction.)

(2pts)

Ans:

9 9 1 ; 0 subz t,t,next

8 8 2 ; 1 subz c,c,next

9 6 3 ; 2 subz t,a,next

9 7 4 ; 3 subz t,b,next

8 9 5 ; 4 subz c,t,next

9 9 5 ; 5 subz t,t,this

0xc 0x0de4 0xbeef ; 6 a: 0xc0de4beef

0x3141 0x5926 0x5358 ; 7 b: 0x314159265358

0 0 0 ; 8 c: 0

0 0 0 ; 9 t: 0

5

Login: Answer Key CSE30 F'97, Final

7. [Operating System] Why do most modern operating systems forbid self-modifying

code?

(2pts)

Ans:

Disallowing self-modifying code permits the sharing of the code segment when

several di�erent processes are running from the same original program image. Fur-

thermore, self-modifying code interact badly with Harvard architecture machines, i.e.,

those with separate instruction and data caches: I-caches are normally read-only, and

so can be implemented using simpler circuitry and can be denser than the D-cache. In

this case, the I-cache's copy of memory would not be synchronized with the D-cache,

where the dynamically modi�ed copy would reside.

8. [Architecture / Operating Systems] What is locality of reference? Explain what it

means relative to caches and virtual memory pages.

(2pts)

Ans:

Locality of reference refers to the fact that programs tend to use certain portions

of memory more often than others, typically depending on which part of the program

is running at the moment. This applies both to instruction memory as well as data

memory. Thus, caches exploit this phenomenon by automatically keeping frequently-

accessed memory contents in faster cache memory in a transparent fashion. Virtual

memory also exploit this phenomenon at a coarser granularity and lower absolute

speeds; instead of cache memory versus physical memory, virtual memory uses phys-

ical memory to hold the frequently accessed data, and the less frequently accessed

data gets written out to disk.

6

CSE30 F'97, Final Login: Answer Key

9. [Assembly Language] What are leaf functions? Give a concise de�nition, and explain

how it a�ects the manner in which the assembly language for it is written.

(3pts)

Ans:

A leaf function is a function that calls no functions { it is a node with no outbound

edges in the call graph. Such a property can sometimes simplify code generation: the

$ra register need not be saved, and often the entire stack frame may be omitted if

the caller-saved registers su�ce for the leaf function's use.

10. [Stack Frames] An explicit frame pointer is sometimes not used { the Larus handout

gives both $fp and $s8 as names (aliases) for $30. In what case must a frame pointer be

used?

(4pts)

Ans:

A frame pointer must be used when compiling code that uses the alloca memory

allocator. alloca allocates memory that is automatically freed when the function

calling alloca returns, and this is accomplished by simply moving the stack pointer

to allocate the temporary storage. In this case, local variables must be located relative

to the frame pointer and not the stack pointer, since the stack pointer will have moved

by a possibly input-dependent amount after the call to alloca.

7

Login: Answer Key CSE30 F'97, Final

11. [MIPS Pseudo-instructions] Into what real MIPS instruction sequence does the

pseudo-instruction

sw $t0, array addr($t1)

expand into?

(4pts)

Ans:

The array array addr is a 32-bit value, and the MIPS assembler will expand it

into the sequence:

lui $at, UPPER(array addr)

addu $at, $at, $t1

sw $t0, LOWER(array addr)($at)

which is a three instruction sequence.

8

CSE30 F'97, Final Login: Answer Key

12. [MIPS instruction set] There are \u" versions of the lb and lh load instructions,

lbu and lhu. Why isn't there a \u" version of the lw instruction? Did the MIPS architects

forget?

(3pts)

Ans:

The \u" instructions are unsigned load instructions. There are unsigned versions

for the byte and half-word loads because when loading unsigned non-32-bit data

values into a 32-bit register, the upper bits need to be zeroed in order for the newly-

loaded register contents to be interpreted as the same value. The non-unsigned load

instructions sign-extends the smaller data value, and so negative numbers would still

be interpreted as negative.

Since the lw instruction completely loads a word, having a signed/unsigned dis-

tinction makes no sense.

9

Login: Answer Key CSE30 F'97, Final

13. [Reverse Polish Notation] The calculator program that we built used reverse polish

notation (RPN). Convert the following normal in�x arithmetic expression into a keystroke

sequence for the calculator, where the numbers are entered in the same order as in the in�x

expression.

5 * (2 + 3) - 2

(2pts)

Ans:

In RPN, the expression would be

5 enter

2 enter

3 enter

+ enter

* enter

2 enter

- enter

10

CSE30 F'97, Final Login: Answer Key

14. [Translating C to assembly] Translate the following C code into an equivalent series

of MIPS assembly language instructions. You may assume that the C variables are in the

correspondingly named registers. Indicate where the code that precedes the loop, the code

that comprises the body of the loop, and the code that follows the loop would be located in

your equivalent MIPS code. E�ciency matters.

code that precedes loop

for (t0 = 0; (t0 > t1) && (t2 != t3); t0 += 4) f

loop body ... may change any variable

g

code that follows loop

(5pts)

Ans:

code that precedes loop

li $t0,0

b test

loop: loop body ... may change any variable

addiu $t0,$t0,4

test: ble $t0,$t1,done

bne $t2,$t3,loop

done: code that follows loop

11

Login: Answer Key CSE30 F'97, Final

15. [Recursion] Translate the following C function into MIPS assembly. As usual, obey

all the standard register usage conventions.

int ack(int i,int j)

f

if (i == 1) return 1 << j;

if (j == 1) return ack(i-1,2)

return ack(i-1,ack(i,j-1));

g

(5pts)

Ans:

.globl ack

ack: sub $sp, $sp, 16

sw $ra, 4($sp)

sw $a0, 8($sp)

sw $a1, 12($sp)

bne $a0, 1, L1

li $v0, 1

asl $v0, $v0, $a1

b L2

L1: bne $a1, 1, L3

sub $a0, $a0, 1

li $a1, 2

jal ack

b L2

L3: sub $a1, $a1, 1

jal ack

move $a1, $v0

sub $a0, $a0, 1

jal ack

L2: lw $ra, 4($sp)

lw $a0, 8($sp)

lw $a1, 12($sp)

add $sp, $sp, 16

jr $ra

12

CSE30 F'97, Final Login: Answer Key

16. [Number representation / MIPS assembly] Suppose you had an unsigned number

N in the register $t0. Give the optimal sequence of instructions to compute (1) N mod 64,

placing the result back in $t0. Do the same for (2) N � 128 (integer division, truncating

towards zero), (3) 9�N , and (4) N17.

By \the optimal sequence" I mean the fastest execution time { assume that the mult

instruction requires 12 cycles to complete, and that the div instruction requires 35 cycles to

complete. Do not use any pseudo-instructions (the dagger \y" instructions in Larus). You

may use the other $t registers for any scratch space that you need.

(8pts, 2 each)

Ans:

(1) Since 64 is an exact power of 2, this is most e�ciently computed using bit

masks:

andi $t0, $t0, 0x3f

This requires only a single instruction.

(2) 128 is also an exact power of 2, so we use:

srl $t0, $t0, 7

This requires only one instruction.

(3) We express 9 as 8 + 1, and use the sequence:

sll $t1, $t0, 3

addu $t0, $t0, $t1

using two instructions and one scratch register, avoiding the mult instruction.

(4) We express 17 as 16 + 1, so N17 = N16 �N = (((N2)2)2)2 �N :

mult $t0,$t0

mflo $t1

mult $t1,$t1

mflo $t1

mult $t1,$t1

mflo $t1

mult $t1,$t1

mflo $t1

mult $t1,$t0

mflo $t0

using 10 instructions of which 5 are multiplies.

13

Login: Answer Key CSE30 F'97, Final

17. [Logic] Given the C boolean expression:

!(((A || !B) && C) || !(D && E))

apply DeMorgan's Theorem and distribute the logical negation all the way through to the

variables A, B, C, D, and E. Fully parenthesize the expression.

(3pts)

Ans:

(((!A && B) || !C) && (D && E))

14

CSE30 F'97, Final Login: Answer Key

18. [Logic and assembly] Translate the following C code fragment to an equivalent

sequence of MIPS instructions. Assume that the C variables are in the correspondingly

named registers.

code which precedes

if ((t0 && t1) || (t2 && t3)) f

true arm

g else f

false arm

g

code which follows

Clearly show where the instructions for the italicized code would go. E�ciency matters |

no unconditional branches are needed.

(5pts)

Ans:

code which precedes

beqz $t0, L1

bnez $t1, L2

L1: beqz $t2, L3

beqz $t3, L3

L2: true arm

b L4

L3: false arm

L4: code which follows

15

Login: Answer Key CSE30 F'97, Final

19. [Translating C to assembly] Translate the following C code into an equivalent

sequence of MIPS instructions using a jump table. You may assume that the C variables

are in the correspondingly named registers. You may use any of the other $t registers for

scratch.

code that precedes the switch

switch (t0 & 0x7) f

case 0: t1 = 5; break;

case 1: t1 = 8; break;

case 2: t1 = 2; break;

case 3: t1 = 3; break;

case 4: t1 = 0; break;

case 5: t1 = 12; break;

case 6: t1 = 1; break;

case 7: t1 = 17; break;

g

code that follows the switch

(5pts)

Ans:

.text case6: li $t1, 1

code that precedes the switch b end switch

and $t1,$t0,0x7 case7: li $t1, 17

sll $t1, $t1, 2 b end switch

lw $t1, jtbl($t1) end switch: code that follows the switch

jr $t1 .data

case0: li $t1, 5 jtbl: .word case0

b end switch .word case1

case1: li $t1, 8 .word case2

b end switch .word case3

case2: li $t1, 2 .word case4

b end switch .word case5

case3: li $t1, 3 .word case6

b end switch .word case7

case4: li $t1, 0

b end switch

case5: li $t1, 12

b end switch

16

CSE30 F'97, Final Login: Answer Key

20. [Translating C to assembly] Translate the following C code into an equivalent

series of MIPS instructions using table lookup. You may assume that the C variables are in

the correspondingly named registers. You may use any of the other $t registers for scratch.

code that precedes the table lookup

f

static unsigned char fntbl[] = f

5,8,2,3,0,12,1,17,

g;

t1 = fntbl[t0];

g

code that follows the table lookup

(5pts)

Ans:

.text

code that precedes the table lookup

and $t1,$t0,0x7

lb $t1, fntbl($t1)

code that follows the table lookup

.data

fntbl: .byte 5

.byte 8

.byte 2

.byte 3

.byte 0

.byte 12

.byte 1

.byte 17

17

Login: Answer Key CSE30 F'97, Final

21. [Code Optimization] Suppose you need to speed up a program. By pro�ling the

program, you've identi�ed the handful of routines that are consuming most of the running

time. What are the techniques that we went over in class you might apply?

(4pts)

Ans:

The �rst and most dramatic speed-up can be achieved by improving the algorithm

used. Strength reduction should then be applied to algebraically replace expensive

arithmetic operations with equivalent cheaper ones. Next, common subexpression

elimination and constant propagation can remove unnecessary repeated computation.

Side-e�ect-free functions with a small range of inputs can be replaced with table

lookup. Loop unrolling can also be applied, to amortize loop control overhead over

many more instructions.

18

CSE30 F'97, Final Login: Answer Key

22. [Code Optimization] Speed up the following code:

#define N (1024*1024) /* or some other very large number */

...

extern int array[N];

int i;

for (i = 0; i < N; i++) f

array[i] = i * i * i * i;

g

You may write the faster version in either C or MIPS assembly.

(7pts)

Ans:

#define N (1024*1024) /* or some other very large number */

...

extern int array[N];

int i, i2, i3, i4;

for (i = i2 = i3 = i4 = 0; i < N;) f

array[i] = i4;

i4 += (i3 << 2) + (i2 << 2) + (i2 << 1) + (i << 2) + 1;

i3 += (i2 << 1) + i2 + (i << 1) + i + 1;

i2 += (i << 1) + 1;

i += 1;

g

19

Login: Answer Key CSE30 F'97, Final

23. [Code Optimization] Speed up the following code and translate it into MIPS

assembler:

/* assume nelt is usually large */

void init array(int array[], int nelt)

f

int t0;

for (t0 = 0; t0 < nelt; t0++) f

switch (t0 % 4) f

case 0: array[t0] = 1; break;

case 1: array[t0] = 5; break;

case 2: array[t0] = 425; break;

case 3: array[t0] = -37; break;

g

g

g

(7pts)

Ans:

init array: andi $t1, $a1, 0xfffffffc and $t1, $a1, 0x3

sll $t1, $t1, 2 beq $t1, 0, L3

addu $t1, $a0, $t1 beq $t1, 1, L4

li $t2, 1 beq $t1, 2, L5

li $t3, 5 sw $t3, 0($t6)

li $t4, 425 add $t6, $t6, 4

li $t5, -37 L5: sw $t4, 0($t6)

move $t6, $a0 add $t6, $t6, 4

b L1 L4: sw $t5, 0($t6)

L2: sw $t2, 0($t6) add $t6, $t6, 4

sw $t3, 4($t6) L3: jr $ra

sw $t4, 8($t6)

sw $t5, 12($t6)

add $t6, $t6, 16

L1: blt $t6, $t1, L2

20

CSE30 F'97, Final Login: Answer Key

24. [Threads] What are threads? What are the di�erences between kernel and user-level

threads? Explain the pros and cons.

(5pts)

Ans:

Threads are virtual CPUs. These are complete register sets | and multiple

threads in a single process may execute in completely di�erent places in the pro-

gram (i.e., the PC for the virtual CPUs have unrelated values). In kernel threads, the

operating system kernel context switches among them. If one kernel thread blocks,

e.g., due to an I/O operation, the kernel will know to switch to another runnable

thread; additionally, on a multi-CPU machine, di�erent threads can execute on dif-

ferent CPUs. User threads are lighter weight: fewer registers need to be saved, and

context switching does not involve address space changes (no need to context switch

to kernel mode due to a timer interrupt and then back to user mode). User level (or

coroutine) threads, however, are not preemptive and if one coroutine thread blocks

on an I/O operation, all the threads will also stop as a side e�ect.

21

Login: Answer Key CSE30 F'97, Final

25. [Threads] Explain what is mutual exclusion, and give a concrete example of why it is

important.

(5pts)

Ans:

Mutual exclusion is preventing more than one thread from accessing some data

at one time. The example given in class was adding a new element as the head of a

linked list:

struct elt f

struct elt *next;

int num;

g *head;

void add elt(struct elt *new elt)

f

elt->next = head;

head = elt;

g

If two threads try to add to the list at the same time, and the �rst thread pauses

(e.g., is context switched out) after the elt->next = head; statement, the second

thread could start and complete a call to add elt before the �rst thread continues;

when it does, it will overwrite head, making the element added by the second thread

unreachable.

To ensure mutual exclusion, locks or semaphores may be used to prevent two

threads from being in a critical region simultaneously.

22

CSE30 F'97, Final Login: Answer Key

26. [Extra credit (?)] Computer programmers often confused Halloween and Christmas,

because Oct 31 (October / Octal 31) is equal to Dec 25 (December / Decimal 25). How

would you devise a mnemonic so you won't get confused when you become a more experienced

programmer?

(0pts)

Ans:

Use this page (front and back) for over
ow. Clearly mark which problem's answer is

being over
owed on both this page and the page containing the original question.

23

