
CSE 30 | Final

Yee Fall '96

Name / Login: Answer sheet

DO NOT LOOK AT ANY OTHER PAGE OF THIS FINAL
UNTIL THE INSTRUCTOR TELLS YOU TO START.

There are a total of 25 questions on 25 pages. When you are told you may

start, you should �rst make sure that you have all the pages, and write your
name and your login at the top of �rst page, and your login on the top of
subsequent pages.

This test is open book, open notes. You may look at your own books and
notes all you want. You may not look at anybody else's books or notes.

2 Login: Answer sheet

1. De�ne the subz instruction for the One-Instruction Computer. (2pts)

Ans:

The subz instruction takes three addresses as arguments:

subz A,B,C

It is equivalent to the following pseudo-code:

mem[A] = mem[A] - mem[B];

if (mem[A] != 0) f
PC = PC + 1;

g else f
PC = C;

g

Login: Answer sheet 3

2. Why do programmers confuse Halloween and Christmas? (1pt)

Ans:

Because Octal 31 is equal to Decimal 25.

3. What's the di�erence between general purpose registers and special pur-
pose registers? Name a couple of each type for the MIPS. (2pts)

Ans:
General purpose registers may be used interchangeably by almost all
instructions; special purpose registers may be used only with certain

instructions and are sometimes used implicitly (e.g., $pc is automat-
ically incremented). General purpose registers are: $a0, $a1, ..., $s0,
etc. Special purpose registers include $hi and $lo.

4 Login: Answer sheet

4. The spim emulator extends the machine-level instruction set by provid-

ing pseudo-instructions such as the la and the li instruction which handles

32-bit constants. To what instruction sequence does li expand to when the

constant does not �t in 16-bits? To what instruction does li expand to when

the constant does �t in 16-bits? (2pts)

Ans:

li $n, <value>

expands to the two instruction sequence when value is a 32-bit con-

stant:

lui $n,<high-16-bits>

ori $n,$n,<low-16-bits>

When value �ts in 16-bits, it expands to:
ori $n,$zero,<16-bit-value>

Login: Answer sheet 5

5. What is instruction bandwidth? In what way do RISC and CISC processor

design strategies di�er about instruction bandwidth usage / requirements?

(3pts)

Ans:

Instruction bandwidth is the rate at which the processor reads bytes

of instructions from memory (instruction-cache and/or RAM). RISC

designs use simpler-to-decode, longer instructions. And because the

typical RISC instruction does \less" than the typical CISC instruction,

more RISC instructions are required to do the same work. Thus, a

RISC-coded version of a program would require a higher instruction

bandwidth than the equivalent CISC-coded program to achieve the

same overall run time.

6 Login: Answer sheet

6. What are the contents of registers $a0, $a1, $v0, $s0, and $s1 after the

following code fragment runs? Assume that the user typed in the key se-

quence 3 1 4 1 5 Return . What are the contents of memory at address

inbuf, inbuf+1, inbuf+2, inbuf+3, . . . inbuf+255? (3pts)

.data

inbuf: .space 256

.text

...

la $a0,inbuf

li $a1,256

li $v0,8

syscall

la $s0,inbuf

lb $s1,0($s0)

values here

Ans:

$a0 = inbuf, $a1 = 256, $v0 = 8, $s0 = inbuf, and $s1 = ASCII value
of the �rst character that the user typed in, which is '3' or 0x33.

At location inbuf will the ASCII value of the character 3 , or 0x33. At

location inbuf+1 will be the character 1 , or 0x31; at location inbuf+2

will be 0x34; at location inbuf+3 will be 0x31; at location inbox+4

will be 0x35; at location inbuf+5 will be a newline character, or 0xa;
at location inbuf+6 will be a null character to terminate the string,

0x0. The contents of inbuf+7 through inbuf+255 are unchanged from
their previous values. (Depends on the elided code that preceded the
syscall.)

Login: Answer sheet 7

7. If a C function (on a MIPSmachine) calls another function that takes three

arguments (arg1, arg2, and arg3), how will those arguments be passed?

(3pts)

Ans:

The arguments will be passed in registers: arg1 in $a0, arg2 in $a1,

and arg3 in $a2. For non-word-sized arguments, see table D-13 in Kane

& Heinrich.

C programs follow the standard register usage convention, and any

assembly language code that interfaces with C code must also.

8 Login: Answer sheet

8. What does the jal instruction do? What registers are a�ected? What is

this instruction used for? (3pts)

Ans:

The jal instruction stores the address of the following instruction (ac-

tually instruction following the branch delay slot following the jal) in

the $ra register, and then transfers control to the address label that is

the argument to the jal instruction (i.e., the $pc is loaded with that

address). The saving of the next instruction address is the \linking"

part of the jump-and-link instruction; the instruction is used for calling

a subroutine / function, which may then return to the caller by using

the jr $ra instruction to return control to the caller.

Login: Answer sheet 9

9. What does word alignment mean? Why do RISC processors generally

require that word loads and stores be word aligned? (3pts)

Ans:

Word alignment refers to placing data at addresses that end with 0, 4,

8, or c (in hex). Having data word aligned means that load and stores

will use at most one bus transaction, since the data bus is a multiple

of a word in size. If a load from memory permitted unaligned accesses,

potentially two bus transactions would be needed, getting only part of

the datum during each transaction.

RISC processors' alignment requirement forces the code to be more

e�cient, and simpli�es the hardware design since detection of unaligned
references can simply generate an exception | which is simple to do
| instead of generating extra bus cycles and shifting data around to
get at the data.

10 Login: Answer sheet

10. Do the following base conversions. You do not need to show intermediate

results. (3pts)

(A) DEADBEEF(16) =?(2)
(B) 53827(9) =?(3)
(C) 33653337357(8) =?(16)

Ans:

(A) DEADBEEF(16) = 11011110101011011011111011101111(2)

(B) 53827(9) = 1210220221(3)

(C)

33653337357(8) = 011011110101011 011011111011101 111(2)

= 11011110101011011011111011101111(2)

= DEADBEEF(16)

Login: Answer sheet 11

11. What are stack frames? What are they used for? What are the function

prologue and epilogue instructions? What do they do? (3pts)

Ans:

A stack frame is a data structure on the stack, which contains space

to hold variables local to the function that constructed it and/or the

original values of callee-saved registers (when that function needs to

use those registers for its own purposes).

The function prologue code runs before the \real" body of the function

executes; it sets up the stack frame. The epilogue code is the converse:

it runs after the \real" body of the function code is done but prior to

returning to the caller, and it tears down the stack frame, restoring the
original value of various registers and deallocating the stack frame.

12 Login: Answer sheet

12. What is the stack memory and where are the places where it might be

stored? (5pts)

Ans:

Stack memory contains a program's stack. It is part of a program's

virtual address space, so it is typically stored in main memory. However,

parts of it could be contained in the data cache, and parts of it could

be paged out to disk.

Login: Answer sheet 13

13. What is locality of reference? Explain what it means relative to caches

and virtual memory pages. (5pts)

Ans:

Locality of reference refers to the fact that programs tend to use cer-

tain portions of memory more often than others, typically depending

on which part of the program is running at the moment. This applies

both to instruction memory as well as data memory. Thus, caches

exploit this phenomenon by automatically keeping frequently-accessed

memory contents in faster cache memory in a transparent fashion. Vir-

tual memory also exploit this phenomenon at a coarser granularity and

lower absolute speeds; instead of cache memory versus physical memory,

virtual memory uses physical memory to hold the frequently accessed
data, and the less frequently accessed data gets written out to disk.

14 Login: Answer sheet

14. Give the equivalent MIPS code to the following C function:

int strncpy(char *dst, const char *src, unsigned int maxchars)

f
/* note side-effect test/assignment */

while (maxchars != 0 && *dst++ = *src++)

--maxchars;

/*

* was ``*src'' instead of ``*src++'',

* but typo corrected during final

*/

g
Note that this is the standard C library strncpy { if no NUL character is
found after maxchars to terminate the source string, the destination string is
not NUL terminated either. You do not need to write a main function. (5pts)

Ans:
.text

strncpy: j test

loop: subiu $a3,$a3,1

test: beq $a3,$zero,done

lw $t0,0($a0)

addiu $a0,$a0,1

sw $t0,0($a1)

addiu $a1,$a1,1

bne $t0,$zero,loop

done: jr $ra

Login: Answer sheet 15

15. Write a MIPS assembly language function eval deriv to evaluate the

derivative of a given polynomial p(x) =
P

d

i=0 aix
i at a given point z. The

derivative of p(x) is given by p0(x) =
P

d

i=1 iaix
i�1.

The code should take three parameters: $a0 is the degree of the polynomial

(d), $a1 is the address of an array of words containing the coe�cients of the

polynomial, highest degree coe�cent at the �rst word, next highest degree

coe�cient at the next word, etc (address $a1 contains ad, address $a1+4

contains ad�1, ..., address $a1+4d+4 contains a0), and $a2 containing the

value of z. The return value of eval deriv should be p0(z). You do not need

to write a main function. (5pts)

Ans:

We can write

p0(x) =
dX

i=1

iaix
i�1

as
p0(x) = f[f[(dad)x+ (d� 1) ad�1]xg+ :::2a2]x+ a1g

and eliminate the exponentiation of z:

.text

eval deriv: li $v0,0

beq $a0,$zero,edone

eloop: lw $v1,0($a1)

mult $v1,$a0

mflo $v1

add $v0,$v0,$v1

sub $a0,$a0,1

beq $a0,$zero,edone

mult $v0,$a2

add $a1,$a1,4

mflo $v0

j eloop

edone: jr $ra

16 Login: Answer sheet

16. Write a MIPS assembly program to implement the following C program.

Your program must follow the structure of the C code and use recursion.

Also, give the standard name for this mathematical function. (6pts)

int fn(unsigned int i)

f
if (i <= 1) return 1;

return i * fn(i-1);

g

Ans:

fn: sub $sp,$sp,12

sw $fp,4($sp)

addu $fp,$sp,12

sw $ra,0($fp)

bgtu $a0,1,nope

li $v0,1

j done

nope: sw $a0,-4($fp)

subu $a0,$a0,1

jal fn

lw $t0,-4($fp)

multu $v0,$v0,$t0

done: lw $ra,0($fp)

lw $fp,4($sp)

addu $sp,$sp,12

jr $ra

This is the factorial function.

Login: Answer sheet 17

17. Give the structured assembly language equivalents of the following C

language control
ow constructs (6pts, 2 each):

1. do f
...

g while (expr);

2. while (expr) f
...

g

3. for (expr1; expr2; expr3) f
...

g

Be sure to indicate where and how the various expressions and

elided loop body code is evaluated. You may assume that the result of
the expressions are in the $s registers (use $s0 for expr, and $s1, $s2, and
$s3 for expr1, expr2, and expr3 as needed).

Ans:
For the do ... while (expr); loop, the equivalent assembly code
is

top: ... # loop body

expr evaluation

bnez $s0, top

For the while loop, the equivalent assembly code is
j test

top: ... # loop body

test: # expr evaluation

bnez $s0,top

For the for loop, the equivalent assembly code is

expr1 evaluation

j test

top: ... # loop body

expr3 evaluation

test: # expr2 evaluation

bnez $s2,top

18 Login: Answer sheet

18. Given the C boolean expression:

!((A && B) || (C && D))

Apply DeMorgan's Theorem and distribute the logical negation through to

the variables A, B, C, and D. (4pts)

Ans:

(!A || !B) && (!C || !D)

Login: Answer sheet 19

19. Vector addition ~x + ~y is de�ned as the element-wise sum of the vec-

tors, i.e., for k dimensional vectors ~x and ~y, if ~x = (x1; x2; : : : ; xk) and

~y = (y1; y2; : : : ; yk), then ~x+ ~y = (x1+ y1; x2+ y2; : : : ; xk + yk). (The vectors

must be of the same length.) C code to compute the sum of two vectors is

void vec add(int *result, int *x, int *y, int dim)

f
int i;

for (i = 0; i < dim; i++) f
*result++ = *x++ + *y++;

g
g
Give an e�cient, loop unrolled version of this code in either MIPS assembly

or C. (6pts)

Ans:
In C, the code is:
void vec add(int *result, int *x, int *y, int dim)

f
register int i;

switch (dim & 0x3) f
case 3: *result++ = *x++ + *y++;

case 2: *result++ = *x++ + *y++;

case 1: *result++ = *x++ + *y++;

g
for (dim >>= 2; dim > 0; --dim) f

result[0] = x[0] + y[0];

result[1] = x[1] + y[1];

result[2] = x[2] + y[2];

result[3] = x[3] + y[3];

result += 4; x += 4; y += 4;

g
g

20 Login: Answer sheet

20. Apply strength reduction to give an equivalent C or MIPS assembly

function to the following C code:

void print table(int n)

f
int i;

for (i = 0; i < n; i++) f
printf("%d %d %d %dnn",i,i*i,i*i*i,i*i*i*i);

g
g
Your equivalent code should not use the multiplication operator. Hint: Pas-

cal's Triangle is: 1 1 1 1 1

1 2 3 4

1 3 6

1 4

1
(6pts)

Ans:

void print table(int n)

f
int i, i2, i3, i4;

for (i = i2 = i3 = i4 = 0; i < n; i++) f
printf("%d %d %d %dnn",i,i2,i3,i4);
i4 += (i3<<2) + (i2<<2)+(i2<<1) + (i<<2) + 1;

i3 += (i2<<1)+i2 + (i<<1)+i + 1;

i2 += (i<<1) + 1;

g
g

Login: Answer sheet 21

21. In the following code:

int vec norm1(int len, int *vec) f

int sum = 0, i;

for (i = 0; i < len; i++) f

if (vec[i] >= 0)

sum += vec[i];

else

sum -= vec[i];

g

return sum;

g

the loop invariant { at the test { is sum =
P

i�1
k=0 jvec[k]j. Prove that this is

the invariant, and use it to prove that this code correctly computes the sum
of the absolute value of the vector elements. (In mathematics, this is called
the L1 norm.) (7pts)

Ans:
We note that the invariant holds at the beginning when i = sum = 0,

and since i � 1 < 0, the sum is zero also. This is the base case.
Assuming that the invariant holds at i = i0, we want to show that it
holds after one pass through the body of the loop. Before entering the
body, we have

i = i0

and

sum =
i0�1X

k=0

jvec[k]j

We modify sum so it is incremented, and sum0 = sum + jvec[i0]j, so
sum0 � jvec[i0]j = sum =

Pi0�1
k=0 jvec[k]j, and

sum0 = jvec[i0]j+
i0�1X

k=0

jvec[k]j

=
i0X

k=0

jvec[k]j

Next, we have i0 = i0 + 1, so sum0 =
P

i
0
�1

k=0 jvec[k]j, and the invariant

holds to the next iteration of the loop (inductive case).

The loop terminates when i = len, so

sum =
i�1X

k=0

jvec[k]j

=
len�1X

k=0

jvec[k]j

which is what we wanted to show. �

22 Login: Answer sheet

22. What is multithreading? How does it a�ect performance? (7pts)

Ans:

Multithreading provides several threads of control, where each thread

is its own, independet register set. The contents of the registers within

each set change according to instructions fetched by the $pc in that set,

and main memory, which is shared among all the threads of a process,

are also modi�ed accordingly. When kernel threads are used, opera-

tions that block one thread will cause the kernel to context switch to

another runnable thread, thus not wasting CPU cycles. Furthermore,

if the code is ran on a multiprocessor, the kernel will automatically use

the extra processor(s) to run available runnable threads. These e�ects

improve the performance of the program. There are, however, aspects
of using threads that degrade performance: to ensure correctness, mu-
tual exclusion via locks, semaphores, monitors, etc are needed to control

access to shared data structures, and the mutual exclusion mechanism
adds overhead. The overall e�ect on performance depends on the avail-
able parallelism in the problem, the number of real processors available,
and the mutual exclusion overhead.

Login: Answer sheet 23

23. What is virtual memory? How is it di�erent from physical memory?

How are the two related? What does virtual memory do for the program /

programmer? (7pts)

Ans:

Virtual memory is the mechanism by which the amount of physical

memory (aka main memory, or RAM-resident memory) is abstracted

away. Pages of \physical" memory, typically 4 kilobytes in size, are

\mapped" into the virtual address space as needed; when a process

accesses memory, it is using virtual addresses which are translated into

physical addresses by special address translation hardware. The system

can provide more virtual memory than there is physical memory: pages

of physical memory are paged out, or copied to a hard disk, when the
operating system needs to use the physical memory for something else,

e.g., data for another virtual page, and the OS can change the virtual-
to-physical translation so that that same page of physical memory will
appear elsewhere in the processes's (or another process's) address space.

When the original data is needed by the process again, a page-fault

exception occurs, where the operating system gains control and �nds a
free physical page into which the data from disk is read (page-in), and

that physical page made to appear in the right place in the faulting
process's address space before that process is allowed to continue.

This means that programmers do not have to know precisely how much
memory is available on a given machine: their programs can run on
machines with di�erent memory con�gurations without change. The
only e�ect would be the actual runtime, which depends on whether the
resident set of the program �ts into the amount of memory physically

available and on the actual amount of locality of reference.

24 Login: Answer sheet

24. The following code counts the number of 1s in the binary number

in register $v0 (some machines have a built-in popcount instruction that

is equivalent). It counts up to 32 (maximum number of 1 bits in a 32-bit

word) in only 28 instructions (the �rst 4 li counts as two instructions each).

Why/how does it work? (7pts)

li $t0, 0x55555555

srl $v1,$v0,1

and $v0, $v0, $t0

and $v1, $v1, $t0

addu $v0, $v0, $v1

li $t0, 0x33333333

srl $v1,$v0,2

and $v0, $v0, $t0

and $v1, $v1, $t0

addu $v0, $v0, $v1

li $t0, 0x0f0f0f0f

srl $v1,$v0,4

and $v0, $v0, $t0

and $v1, $v1, $t0

addu $v0, $v0, $v1

li $t0, 0x00ff00ff

srl $v1,$v0,8

and $v0, $v0, $t0

and $v1, $v1, $t0

addu $v0, $v0, $v1

li $t0, 0xffff

srl $v1,$v0,16

and $v0, $v0, $t0

addu $v0, $v0, $v1

Ans:

The code performs several additions in parallel in the addu instructions.
The �rst addu adds 16 pairs of one-bit numbers in 16 2-bit-wide regis-
ters, and the second addu adds 8 pairs of 2-bit numbers in 8 4-bit-wide
registers, etc.

Login: Answer sheet 25

25. Give a faster popcount sequence. (7pts) (Hint: recall the sample solu-

tions for assignment 2 on printing the ASCII code of input characters.)

Ans:

The following table-lookup version is faster:

andi $t1,$t0,0xff

lb $v0,pop($t1)

srl $t1,$t0,8

andi $t1,$t1,0xff

lb $t2,pop($t1)

addu $v0,$v0,$t2

srl $t1,$t0,16

andi $t1,$t1,0xff

lb $t2,pop($t1)

addu $v0,$v0,$t2

srl $t1,$t0,24

andi $t1,$t1,0xff

lb $t2,pop($t1)

addu $v0,$v0,$t2

The table pop is a 256-entry array of bytes containing the number of

one bits in the index.

