
CSE30 | Final

Yee Fall '99

Name and Class Account Login: Answer Key

There are a total of 15 questions on 12 pages. There are 100 points possible. It is unlikely that you will
�nish the entire exam. Wait until the instructor/proctors has passed out exams to everybody before you
start. The questions are not in any particular order. Advice: skim through the entire test to determine
which of the problems you can solve quickly and work on those �rst, rather than getting stuck on a hard
problem early and wasting too much of your time on it.

When you can start, you should �rst make sure that you have all the pages, and write your name and
your login name on the �rst page, and your login name on the top of all subsequent pages. Pages of this
exam will be separated and graded separately | if you fail to write your name at the top of a page, you
will not receive credit for answers on that page. Write clearly: if we cannot read your handwriting or your
pencil smudges, you will not properly get credit for your answers.

This exam is closed book. You are allowed two sheets of notes. You may look at your own notes all
you want. You may not look at anybody else's books, notes, exam, or otherwise obtain help from another
human being, arti�cial intelligence, metaphysical entity, or space alien. If we see your eyeballs wandering,
you will get a zero for the exam. If you must look away from your exam/notes to think, look up at the
ceiling / into space or close your eyes.

No electronic computation aids are allowed.

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Score

Possible 3 9 12 5 2 10 5 2 7 15 8 8 5 8 1 100

Login: Answer Key CSE30 F'99, Final

1 (Number representation) Given a number n represented as string of k digits d0; d1 : : : dk�1 in base b,
where 0 � dj < b for j = 0; : : : ; k � 1, written as n = dk�1dk�2 : : : d2d1d0 (b).

1: What is n written in a (base-free) mathematical notation (e.g., a summation).

2: Also write down n� b3 as a string of digits.

(3pts)

1: The number is

n =

k�1X

i=0

dib
i

2: When this number is multiplied by b3, it is just n � b3 = dk�1dk�2 : : : d1d0000 (b), i.e., we add
three trailing zeros.

2 (Base Conversion) Perform the following base conversions.

1: 11111110111010111111000000001011(2) =?(16)

2: 24000330013(8) =?(16)

3: 55555555(16) =?(8)

(9pts, 3 each)

1: 11111110111010111111000000001011(2) = 1111 1110 1110 1011 1111 0000 0000 1011(2)
= FEEBF00B(16)

2: 24000330013(8) = 10 100 000 000 000 011 011 000 000 001 011(2)
= 1010 0000 0000 0001 1011 0000 0000 1011(2)
= A001B00B(16)

3: 55555555(16) = 0101 0101 0101 0101 0101 0101 0101 0101(2)
= 01 010 101 010 101 010 101 010 101 010 101(2)
= 125 2525 2525(8)

2

CSE30 F'99, Final Login: Answer Key

3 Suppose we number the bits of a 32-bit word in the usual way, i.e., the least signi�cant bit is b0 and
the most signi�cant bit is b31. Give an eÆcient MIPS instruction sequence to compute oddbits =
b1 + b3 + : : : + b31, and evenbits = b0 + b2 + : : : + b30 of input word $a0. You may use any of the
t registers for scratch computation. After your MIPS instruction sequence runs, the value evenbits

should be in register $v0, and the value oddbits should be in register $v1.

(12pts)

li $t0,0x55555555

srl $t1,$a0,1

and $t2,$a0,$t0 # only the 16 even bits

and $t1,$t1,$t0 # only the 16 odd bits

li $t0,0x33333333

srl $t3,$t2,2

srl $t4,$t1,2

addu $t2,$t2,$t3

addu $t1,$t1,$t4

and $t2,$t2,$t0 # 8 four-bit sub-registers

and $t1,$t1,$t0 # possible values are 0,1,2

li $t0,0x0f0f0f0f

srl $t3,$t2,4

srl $t4,$t1,2

addu $t2,$t2,$t3

addu $t1,$t1,$t4

and $t2,$t2,$t0 # 4 8-bit sub-registers

and $t1,$t1,$t0 # 0-4

li $t0,0x00ff00ff

srl $t3,$t2,4

srl $t4,$t1,2

addu $t2,$t2,$t3

addu $t1,$t1,$t4

and $t2,$t2,$t0 # 8 4-bit sub-registers

and $t1,$t1,$t0 # 0-8

li $t0,0xffff

srl $t3,$t2,8

srl $t4,$t1,8

addu $t2,$t2,$t3

addu $t1,$t1,$t4

and $v0,$t2,$t0

and $v1,$t1,$t0

3

Login: Answer Key CSE30 F'99, Final

4 (Micro-architecture) What does the Memory Management Unit (MMU) do?

(5pts)

The MMU translates virtual addresses to physical addresses. It also enforces memory protection, so
that processes can only access their own memory: one process cannot access the memory belonging to
another process.

5 (One Instruction Computer) De�ne the subz instruction in pseudo-code.

(2pts)

subz a,b,c

is equivalent to the following C-like pseudo-code:

mem[a] = mem[a] - mem[b];

if (mem[a] == 0) {

pc = c;

} else {

pc = pc + 1;

}

4

CSE30 F'99, Final Login: Answer Key

6 (Macro Assembly) Expand the macros in the following macro assembly program, giving \pure" assem-
bly code. Do not convert to machine code.

.data

one: .word 1

zero: .word 0

a: .word 15

b: .word 20

c: .word 7

d: .word 99

foo: .macro a,b,c

again: subz a,b,next

subz c,one,done

subz zero,zero,again

done:

.endmacro

.text

foo b,c,a

foo d,c,b

done: subz zero,zero,done

(10pts)

.data

one: .word 1

zero: .word 0

a: .word 15

b: .word 20

c: .word 7

d: .word 99

.text

again0: subz b,c,next

subz a,one,done0

subz zero,zero,again0

done0:

again1: subz d,c,next

subz b,one,done1

subz zero,zero,again1

done1:

done: subz zoer,zero,done

5

Login: Answer Key CSE30 F'99, Final

7 (One Instruction Computer) Write an oic assembly language program to compute
PN

i=1 2� i where N
is stored in memory location 0x8000, and the result is placed in location 0x8001. The program should
start at location 0x0.

(5pts)

.data 0x8000

N: .word 0 # input value; will be overwritten

output: .word 0

i: .word 0

zero: .word 0

negone: .word -1

.text 0x0

subz output,output,next

subz i,i,next

subz i,N,done

loop: subz output,i,next

subz output,i,next

subz i,negone,done

subz zero,zero,loop

done: subz i,i,done

8 (RISC and CISC) Give an example of a processor with a RISC architecture and an example of processor
with a CISC architecture.

(2pts)

grading: MIPS Rxxx, Motorola/IBM/Apple PowerPC, Compaq/DEC Alpha are all RISCs. Intel x86,
Motorola 68000, VAX, ... are all CISCs.

The MIPS architecture is a RISC, and the R2000 is an implementation of that architecture; a 486,
Pentium, Pentium II are processors that implements the x86 (or IA-32) architecture, which is a CISC
architecture.

6

CSE30 F'99, Final Login: Answer Key

9 (EÆciency) When should a loop be unrolled?

int t0, t1, *t2;

/* code that precedes loop */

for (t0 = 0; t0 < N; t0++) {

/* loop body */

}

/* code that follows loop */

(7pts)

If the loop body is short, then the loop control overhead, as a fraction of the total execution time for
one iteration, is large. In this case, if eÆciency requirements dictate, the loop should be unrolled so
that the loop control overhead is amortized over the execution time of several copies of the loop body.

If the loop body is long or if the number of iterations is typically small anyway, then unrolling won't
help much.

(Loop unrolling should be one of the later steps in the optimization process: �rst improve the algorithm,
then if still more eÆcient code is needed, apply common subexpression elimination and constant folding
if the compiler can't do it, and loop unrolling.)

7

Login: Answer Key CSE30 F'99, Final

10 (EÆciency) Write a MIPS assembly language function that is functionally equivalent to the following
C function. Make it as eÆcient as you can; you should not just do a verbatim translation.

void wordcopy(unsigned int *dst,

unsigned int *src,

int count)

{

int i;

for (i = 0; i < count; i++) {

dst[i] = src[i];

}

}

(15pts)

You don't have to unroll the loop 8 times as in this sample solution. This gives a per-element cost of
20 count

8
= 2:5count. The simple, non-unrolled solution has a per-element cost of about 7count.

.data

jtab: .word L7,L6,L5,L4,L3,L2,L1,L0

.text

wordcopy: and $t0,$a2,7

srl $t0,$t0,2

lw $t0,jtab($t0)

jr $t0

L7: lw $t0,0($a1)

sw $t0,0($a0)

addu $a1,$a1,4

addu $a0,$a0,4

L6: lw $t0,0($a1)

sw $t0,0($a0)

addu $a1,$a1,4

addu $a0,$a0,4

L5: lw $t0,0($a1)

sw $t0,0($a0)

addu $a1,$a1,4

addu $a0,$a0,4

L4: lw $t0,0($a1)

sw $t0,0($a0)

addu $a1,$a1,4

addu $a0,$a0,4

L3: lw $t0,0($a1)

sw $t0,0($a0)

addu $a1,$a1,4

addu $a0,$a0,4

L2: lw $t0,0($a1)

sw $t0,0($a0)

addu $a1,$a1,4

addu $a0,$a0,4

L1: lw $t0,0($a1)

sw $t0,0($a0)

8

CSE30 F'99, Final Login: Answer Key

addu $a1,$a1,4

addu $a0,$a0,4

L0: srl $a2,3

beq $a2,$zero,done

again: lw $t0,0($a1)

sw $t0,0($a0)

lw $t1,4($a1)

sw $t1,4($a0)

lw $t2,8($a1)

sw $t2,8($a0)

lw $t3,12($a1)

sw $t3,12($a0)

lw $t4,16($a1)

sw $t4,16($a0)

lw $t5,20($a1)

sw $t5,20($a0)

lw $t6,24($a1)

sw $t6,24($a0)

lw $t7,28($a1)

sw $t7,28($a0)

addu $t1,$t1,32

addu $t0,$t0,32

subu $a2,$a2,1

bgt $a2,$zero,again

done: jr $ra

9

Login: Answer Key CSE30 F'99, Final

11 (Stack Frames) Write the MIPS assembly language equivalent for the following C function:

int funny(int n)

{

if (n <= 2) return 1;

else return n * funny(n-1) * funny(n-2);

}

(8pts)

frame: fp, funny(n-2), ra, n

funny: subu $sp, $sp, 16

sw $fp, 4($sp)

addu $fp, $sp, 16

sw $ra, -4($fp)

bgt $a0, 2, rec_fib

li $v0, 1

b funny_done

rec_funny:

sw $a0, 0($fp)

subu $a0, $a0, 2

jal funny

sw $v0, -8($fp)

lw $a0, 0($fp)

subu $a0, $a0, 1

jal funny

lw $a0, -8($fp)

mul $v0, $v0, $a0

lw $a0, 0($fp)

mul $v0, $v0, $a0

funny_done:

lw $ra, -4($fp)

lw $fp, 4($sp)

addu $sp, $sp, 16

jr $ra

10

CSE30 F'99, Final Login: Answer Key

12 (EÆciency) Give an eÆcient MIPS implementation of the following C expression:

v0 = 24 * s0 + 9 s1;

(8pts)

sll $t0,$s0,4 # 16 s0

sll $t1,$s0,3 # 8 s0

addu $v0,$t0,$t1 # 24 s0

sll $t0,$s1,3 # 8 s1

addu $v0,$v0,$t0

addu $v0,$v0,$s1

13 Design questions.

1: How would an implementation of bitblt change if the source and destination regions were not
allowed to overlap?

2: How would an implementation of bitblt change if the display was 24-bit true color instead of
black-and-white bitmapped? (A true-color display uses a word (4 bytes) per pixel for intensity
values of the red, green, and blue color components, expressed as three separate 8-bit values, one
for each of the �rst 3 bytes; the fourth byte is ignored.)

(5pts)

1: There wouldn't be a need to divide up into the four major cases to decide which \direction" to
do the copying. Shifting still

2: There wouldn't be a need for any shifting to align pixel values within words, since every pixel is
word aligned.

11

Login: Answer Key CSE30 F'99, Final

14 Describe the MIPS R2000 pipeline and what happens in each pipeline stage for the instruction lw

$t0,-4($fp).

(8pts)

IF: instruction fetch; ID: instruction decode { �gure out it is a load word, send immediate displacement
-4 to ALU, tell the register �le to send the value in $fp to the ALU; EX: execution { the ALU adds the
-4 and the value from $fp; MEM: memory operation { the computed address (ALU's output) is sent
to the cache to perform the memory load; WR: write register { the returned memory word is written
to $t0.

15 Write your class account legibly on all the pages.

(1pt)

12

