
RaceGuard: Kernel Protection From Temporary File Race Vulnerabilities

Crispin Cowan, Steve Beattie, Chris Wright, and Greg Kroah-Hartman

WireX Communications, Inc. http://wirex.com/

Abstract
Temporary file race vulnerabilities occur when privi-
leged programs attempt to create temporary files in an
unsafe manner. “Unsafe” means “non-atomic with
respect to an attacker’s activities.” There is no portable
standard for safely (atomically) creating temporary files,
and many operating systems have no safe temporary file
creation at all. As a result, many programs continue to
use unsafe means to create temporary files, resulting in
widespread vulnerabilities. This paper presents Race-
Guard: a kernel enhancement that detects attempts to
exploit temporary file race vulnerabilities, and does so
with sufficient speed and precision that the attack can be
halted before it takes effect. RaceGuard has been imple-
mented, tested, and measured. We show that RaceGuard
is effective at stopping temporary file race attacks, pre-
serves compatibility (no legitimate software is broken),
and preserves performance (overhead is minimal).

1 Introduction
Attacks exploiting concurrency problems (“race vulner-
abilities”) are nearly as old as the study of computer sys-
tem security [1, 4]. These are called TOCTTOU (“Time
of Check To Time Of Use”) errors [5]. Of particular
interest is the temporary file creation vulnerability: pro-
grams seeking to create a temporary file first check to
see if a candidate file name exists, and then proceed to
create that file. The problem occurs if the attacker can
race in between the file existence check and the file cre-
ation, and the attacker creates the file that the victim
program expected to create.

In concrete terms, this problem occurs on UNIX systems
when programs use stat() or lstat() to probe for
the existence of files, and open(O_CREAT) to create
the files. An encapsulated means to create temporary
names is the mktemp() library function.1 The
mktemp() library function simply encapsulates the
lstat() call, and thus mktemp() followed by
open(O_CREAT) is vulnerable to race attacks.

This race condition becomes a security vulnerability if
the victim program creating the temporary file is privi-
leged (i.e. running as root or some other privileged
user-ID) and the attacker creates a link pointing to a
security sensitive file such as /etc/passwd or /
etc/hosts.allow. When this occurs, the
open(O_CREAT) will obliterate the data contained in
the sensitive file. The fopen() library function, being
a wrapper around open(O_CREAT), is similarly vul-
nerable.

There are two commonly accepted mechanisms that
exist to prevent this race condition: using open() with
the O_CREAT and O_EXCL flags, or using the
mkstemp() library function (which is a wrapper
around open(O_CREAT|O_EXCL)). When
open(O_CREAT|O_EXCL) is called on a file that
already exists, it will fail and prevent the race attack.
Unfortunately, because these mechanisms are not ubiq-
uitously available and portable, common programs
(such as Apache [2, 12]) still continue to use
mktemp() and friends, despite the fact that the Linux
mktemp man page says “Never use mktemp().”

This paper presents RaceGuard: a kernel enhancement
that detects attempts to exploit temporary file race vul-
nerabilities, and does so with sufficient speed and preci-
sion that the attack can be halted before it takes effect.
RaceGuard functions by detecting the change in circum-
stances between the stat() call and the open() call. If the
stat() “fails” (the file does not exist), then RaceGuard
caches the file name. If a subsequent open() call pro-
vides the same name, and discovers that the file does
exist, then RaceGuard detects a race attack, and aborts
the open() operation.

The rest of this paper is organized as follows. Section 3
presents the RaceGuard design and implementation.
Section 4 presents our security testing against known
race vulnerabilities in actively used software. Section 5
presents our compatibility testing, showing that Race-
Guard protection does not interfere with normal system
operations. Section 6 presents our performance testing,
showing that the performance costs of RaceGuard pro-
tection are minimal. Section 7 describes related work in1. and related library functions tmpnam() and tempnam().

This work supported in part by DARPA contract N66001-00-C-8032.

defending against temporary file race vulnerabilities.
Section 8 presents our conclusions.

2 Temporary File Race Vulnerabilities
The basic form of a temporary file race vulnerability is
that a privileged program first probes the state of the file
system, and then based on the results of that probe, takes
some action. The attacker can exploit the vulnerability
by “racing” between the probe and the action to change
the state of the file system in some critical way, such
that the victim program’s action will have an unintended
effect.

The simple form of this attack is temporary file creation.
The victim program seeks to create a temporary file,
probes for the existence of the file, and if the nominated
file name is not found, proceeds to create the file. The
attacker exploits this by creating either a symbolic or
hard link that matches the name of the file about to be
created, and points to a security sensitive file. The result
is that the victim program will unwittingly over-write
the security sensitive file with unintended content.

A variation on this scheme is the “dangling symlink”.
The victim program performs the same sequence as
above. The attacking program races in and creates a
symlink or hard link from the matching name to a non-
existent file whose existence has security implications,
such as /etc/hosts.allow or /etc/nologin.

Another variation is the “file swap.” Here the victim
program is a SUID root program that can be asked to
write to a specific file [5]. The victim program defen-
sively checks to see if the requesting user has access to
the file, and then only does the write if the user has per-
mission. The attacker provides a file that they have
access, to, and between the access check and the write
operation, the attacker swaps the file for a symlink
pointing to a security sensitive file.

3 RaceGuard: Dynamic Protection from
Race Attacks
RaceGuard detects attempts to exploit race vulnerabili-
ties at run time by detecting a change in the environment
between the time the program probes for the existence
of a file, and the time it tries to create it: if the file
named “foo” does not exist at the time of the stat, but
does exist at the time of the open, then someone tried to
race us, so abort the operation. RaceGuard achieves this
by caching the file names that are probed, and when cre-
ation attempts occur that hit existing files, the names are
compared to the cache. Section 3.1 describes the Race-

Guard algorithm. Section 3.2 describes the RaceGuard
implementation and the cache management policy.

3.1RaceGuard Design
RaceGuard seeks to detect pertinent changes in the file
system between the time an application probes for a
nominated temporary file name, and the time the file is
actually created. “Pertinent” means changes with
respect to the nominated name. The RaceGuard algo-
rithm to achieve this is as follows:

• Each process keeps a cache of potential temporary
file races. This cache is a list of file names, associ-
ated with each process control block within the ker-
nel.

• If file probe result is “non-existent file,” then cache
the file name in process’s RaceGuard cache.

• If file creation hits a file that already exists, and the
name matches a name in the RaceGuard cache, then
this is a race attack: abort the open attempt.

• If file creation succeeds without conflicts, and
matches a name in the RaceGuard cache, then clear
that entry from the cache. This prevents “false posi-
tive” RaceGuard events when a program uses the
same name for a file more than once.

This caching mechanism serves to detect and differenti-
ate between the sequence “probe; create”, and “probe;
attacker meddling; create”. To defend against the “dan-
gling symlink” variant attack described in Section 2,
RaceGuard does two resolves on the name provided to
open that are in the RaceGuard cache: the first follows
symlinks, while the second does not. If the two resolve
differently, and the argument name matches an entry in
the RaceGuard cache, then this is treated as a race
attack.

RaceGuard does not defend against the “file swap”
attack. Because the attack concerns an already existent
file, this is not really a temporary file race attack. In
practice, such vulnerabilities appear to be relatively
rare: searching Securityfocus.com’s vulnerability data-
base [14] for “race” produced 75 hits, while searching
for “race & !tmp & !temp” produced only 24 hits. Even
among the 24, random sampling indicates that many of
them are actually temporary file issues, but did not say
so in the name of the vulnerability.

3.2RaceGuard Implementation & Cache
Management Policy
The RaceGuard implementation is in the kernel, facili-
tating both per-process and inter-process RaceGuard
cache management. RaceGuard mediates three basic
types of system calls:

• those which can inform the program that a file sys-
tem entry does not exist -- stat(), lstat(),
access(), newstat(), and newlstat().

• those which enable the program to actually create
file system entries -- open(), creat(),
mkdir(), mknod(), link(), symlink(),
rename(), and bind().

• those which create and remove processes --
fork() and exit().

These system calls are often called indirectly via library
wrappers. For example, an insecure program may use
the C library function mktemp(), a wrapper for
lstat(), followed by fopen(), a wrapper for
open(). Placing RaceGuard mediation in the kernel
provides protection for such a programs, in an effort to
provide mediation of temporary file creation that is as
complete as possible [13].

The interesting part of RaceGuard’s implementation is
the cache management policies: when to place a cache
entry, when to clear it, and the cache replacement pol-
icy. We take an aggressive position on cache clearing,
and a conservative position on cache populating. This
results in some potential race vulnerabilities getting past
RaceGuard, in exchange for assuring that no legitimate
software is disrupted by RaceGuard. We do this because
RaceGuard is an intrusion rejector in addition to an
intrusion detector, making false positives much more
critical than false negatives.

The RaceGuard cache is small (7 entries per process) to
keep the kernel memory footprint small, as there is one
cache per process, one cache entry per file, and each
cache entry is pre-allocated and large
(MAX_PATH_LEN). We hypothesize that most race sit-
uations occur with little file system activity occurring in
the process between the stat() and the open(), thus a
small cache will be sufficient.

The assumption that programs will do the probe and cre-
ation in close sequence also affects our cache eviction
policy. We considered using LRU (Least Recently
Used) and FIFO (First In, First Out). LRU is not appro-
priate because the expected use is one creation and one
reference, so a recent reference is not a good basis for
retention. We settled on this fast approximation to
FIFO:

1. The cache is a circular buffer.

2. Scan the cache for empty slots, and take the first emp-
ty slot found. Note: empty slots occur naturally for
RaceGuard because of the heavy use of cache invali-
dation upon successful creation of temporary files
(see Section 3.1).

3. The above scan is started from the most recently cre-
ated entry. If no empty slots are found, then eject the
entry just before the most recently created entry slot
in the circular buffer.

This cache eviction policy is fast, and avoids the pathol-
ogy of evicting the most recently created entry.

Races sometimes occur between processes, especially
for shell scripts. RaceGuard partially deals with this by
inheriting the cache from parent to child (which is why
fork() is mediated). If the parent tested a file’s exist-
ence with a common shell built-in function such as [-
f tempfile], this information is shared with its
subsequent child processes. Employing our aggressive
cache clearing policy, child processes clearing entries
from their cache notify their parent to also clear entries.
Likewise, children do not try to populate their parents’
cache as this would violate our conservative cache pop-
ulation policy and could pollute the parent’s cache or
cause false positives.

Some system calls which create file system entries are
not subject to race conditions because they fail when the
entry already exists, i.e. mkdir(), link(), etc. How-
ever, we clear matching cache cache entries on any suc-
cessful file system entry creation, even those which we
do not need to monitor for races. Similarly, many sys-
tem calls return ENOENT informing the user that no file
system entry exists. However, we have carefully
selected a small subset of these calls to mediate based
on real world code. It is common for applications to use
stat() or access() to check for a file’s existence,
while it is uncommon for applications to use chmod()
for such a check. This conservative approach to cache
population also helps ensure the cache is not polluted.

This approach of cautiously only caching entries from a
few file probing system calls is largely effective. How-
ever one pathological case exists: when a shell script
executes a program, the shell typically stat’s for that
program file in every directory in the $PATH. This has
the effect of flooding the RaceGuard cache with useless
entries. Thus, a shell script that probes for a file, exe-
cutes an external program, and then creates the file, will
not be protected by RaceGuard.

Note that this problem does not occur for native pro-
grams and dynamic linking. The GNU/Linux ld.so
loader doesn’t stat; open shared libraries when
searching the $LD_LIBRARY_PATH for a .so file.
The execlp/execvp system calls search the path, but
they do not stat files; instead, they call execve (the
system call), and if it fails they move on to the next
directory in the path.

4 Security Testing
Rigorous testing of temporary file race vulnerabilities is
problematic, because the vulnerability is fundamentally
non-deterministic: the outcome of the attack depends on
whether the victim program or the attacking program
wins the race to the file in question. Therefore, the secu-
rity testing in this paper will not be as cleanly definitive
as we would like. To do deterministic, repeatable test-
ing, we had to create a situation in which the attacker
would reliably win the race. We did this by creating a
doctored version of the mktemp library call that does
two key things:

Pause the Program: our doctored mktemp function
pauses the caller for 30 seconds, giving the attacker
ample time to deploy the race attack.

Print the Created File Name: The file names produced
by mktemp are easy enough to guess that a deter-
mined attacker can get a hit and violate security,
eventually. Our doctored mktemp function shortens
this task by printing the name of the temporary file
that it will create to standard output. This allows the
attacker to precisely deploy a race attack, rather than
repeatedly guessing the file name.

While we recognize the limited value of security testing
against such a straw-man, we felt it necessary to get
repeatable experiments. We view the above concessions
as largely immaterial to the validity of RaceGuard
defense, because they only make the programs more

vulnerable. However, it is interesting to note that while
exploits for buffer overflow [10], format bug [6], and
CGI [8] vulnerabilities are readily available, exploits for
race vulnerabilities are extremely rare. We conjecture
that the relative scarcity of race exploits is related to the
relative difficulty in successfully deploying race attacks:
“script kiddies” aren’t interested in attacks that are hard
to do, and so race attacks remain the purview of the rela-
tively serious attacker.

Using this doctored mktemp function, we attacked four
programs: RCS version 5.7 cite{rcs}, rdist Version 6.1.5
cite{rdist}, sdiff - GNU diffutils version 2.7 cite{dif-
futils}, and shadow-utils-19990827 cite{shadow}. In
each case, without RaceGuard protection, we succeeded
in duping the victim program into over-writing an unin-
tended file. Figure 1 shows such a successful attack
against RCS. With RaceGuard protection, the identical
attack produces a RaceGuard intrusion alert and aborts
the victim program, while the file that would have been
over-written is unharmed, as shown in Figure 2.

5 Compatibility Testing
RaceGuard is intended to be a highly transparent secu-
rity solution, which means that it may not break much
(if any) legitimate software that is not being actively
subjected to actual race attacks. To test this compatibil-
ity requirement, we exercised RaceGuard under a wide
variety of software. To that end, RaceGuard has been
running on various developers workstations day-to-day
since January 1, 2001. This section describes the various

 <<< set up our target to overwrite >>>
[steve@reddwarf .elm]$ echo "please dont hurt me" > ~/dont_hurt_me

 <<< run our vulnerable program >>>
[steve@reddwarf .elm]$ LD_PRELOAD=~/libmktemp.so rcsdiff -u elmrc > /dev/null
===
RCS file: RCS/elmrc,v
retrieving revision 1.3
unsafe_mktemp[20038]: ImmunixOS unsafe mktemp - about to pass back /tmp/T0LZ388D
 <<< In another shell, do "ln -s ~/dont_hurt_me /tmp/T0LZ388D" >>>
diff -u -r1.3 elmrc

 <<< and what does our target now contain? >>>
[steve@reddwarf .elm]$ cat ~/dont_hurt_me | head -5
#
.elm/elmrc - options file for the ELM mail system
#
Saved automatically by ELM 2.5 PL1 for Steve Beattie
#

Figure 1 Successful Attack Against RCS Without RaceGuard

compatibility faults induced by the original RaceGuard
design, and how we addressed them. The current imple-
mentation exhibits no known compatibility faults.

The first problem we encountered was manifested by
the Mozilla web/mail client. Mozilla makes heavy use
of temporary files for caching web content. Re-use of
some of these names induced false positive reports from
RaceGuard. This problem is what spurred us to add the
cache clearing feature, where RaceGuard cache entries
are flushed when the corresponding file creation suc-
ceeds.

A related problem was induced by the script Red Hat
Linux uses to preserve /dev/random’s entropy pool
across re-boots. This is a shell script in which the parent
process does the probe, and a child process creates the
temporary file. Adding the feature where clearing the
cache entry from a process also clears the entry from its
parent’s cache (see Section 3.2) fixed this problem.

The third problem encountered was induced by CVS [3]
checkout. Here, CVS frequently probes for the same file
name in various directories. The rough sequence of
“probe(“foo”); chdir(“bar”);
creat(“foo”)” induced a false positive RaceGuard
event for the file “foo”. Changing RaceGuard cache
entries from simply the name presented to each system
call to a fully resolved absolute path addressed this
problem.

Finally, the VMWare virtual machine emulation system
cite{vmware} manifested a minor compatibility prob-
lem with RaceGuard. Portions of the VMWare system
periodically make calls to the stat() system call with
a null argument for the pathname. Initially, RaceGuard
reported a debugging error when this occurred (thinking
that it was some kind of error copying syscall arguments
to kernel space. However, once we satisfied ourselves
that this behavior is harmless, we disabled that debug-
ging feature.

The RaceGuard kernel has been in use on various devel-
oper workstations (now up to half a dozen) for the last
six weeks. Workloads include editing files, compiling &
testing code, reading e-mail, surfing the web, playing
MP3s1, and compiling large systems such as the kernel
itself (see Section 6). The above are the only compatibil-
ity issues found to date, and all of them (except the
VMWare problem) are addressed by the current imple-
mentation.

6 Performance Testing
Any run-time security defense will impose performance
costs, due to additional run-time checks that it is per-
forming. However, a security enhancement must be effi-
cient enough that these overhead costs are minimal with
respect to the defense they provide. Ideally, the cost
should be below noticability for the intended user base.

 <<< set up our target to overwrite >>>
[steve@kryten .elm]$ echo "please dont hurt me" > ~/dont_hurt_me

 <<< run our vulnerable program >>>
[steve@kryten .elm]$ LD_PRELOAD=~/libmktemp.so rcsdiff -u elmrc > /dev/null
===
RCS file: RCS/elmrc,v
retrieving revision 1.3
unsafe_mktemp[1456]: ImmunixOS unsafe mktemp - about to pass back /tmp/T0POjIdZ
 <<< In another shell, do "ln -s ~/dont_hurt_me /tmp/T0POjIdZ" >>>
/usr/bin/co: Killed
rcsdiff aborted

 <<< and what does our target now contain? >>>
[steve@kryten .elm]$ cat ~/dont_hurt_me
please dont hurt me

 <<< RaceGuard intrusion alert in syslog >>>
[steve@kryten .elm]$ dmesg | tail -1
Immunix: RaceGuard: rcsdiff (pid 1458) killing before opening /tmp/T0POjIdZ!

Figure 2 Failed Attack Against RCS With RaceGuard

1. Essential for software development :-)

RaceGuard achieves this level of performance. Over-
head is only imposed on the run-time cost of a handful
of mediated system calls. The cost on each system call is
cache insertion or lookup to see if the proposed name is
in the RaceGuard cache. Section 6.1 presents
microbenchmarks that show the precise overhead
imposed on these system calls. Section 6.2 shows mac-
robenchmarks that measure the imposed overhead on
programs that make intensive use of many temporary
files.

6.1Microbenchmarks
Here we measure the marginal overhead of RaceGuard
protection on each of the mediated system calls. We
measure the overhead with programs that call the
affected system call 10,000 times in a tight loop, the test
is run 10 times, the lowest and highest are thrown away,
and the remainder are averaged. We ran these tests with
and without RaceGuard protection, and computed the
percent overhead. The performance results are shown in
Table 1. Some commentary on the results:.

Stat a non-existent file: measure the overhead to create
a RaceGuard cache entry. The marginal overhead is
substantial, because the work of the non-RaceGuard
case is minimal, while the RaceGuard case is doing
some work.

Open non-existent file: measure the overhead to find
and clear a RaceGuard cache entry. We do not actu-
ally believe there is a speedup due to RaceGuard, and
regard this as experimental error, as the differences
within the tests exceeded the differences between the
tests. We believe this is because the cost of creating a
non-existent file is dominated by the state of the file
system on disk.

Fork: measure the overhead of copying the RaceGuard
cache. This test exhibited significant variances, and
so we enhanced measurement to run the test 100
times and took the average. The variance was present
in both the RaceGuard and non-RaceGuard tests, so
it was not induced by RaceGuard.

Thus there is substantial overhead only in stat’ing non-
existent files, and that cost is dwarfed by the cost of cre-
ating files. This operation does not represent a large
amount of time in a real workload, as we show in our
macrobenchmarks in Section 6.2.

6.2Macrobenchmarks
To stress-test RaceGuard at the macro level, we sought
an application that incurred a substantial amount of run
time, used many temporary files, and did a lot of fork-
ing. Our first selected test is what we call the Khernel-
stone1: the time to build the SRPM of the Linux kernel,
which builds the kernel from its 1800 C and assorted
assembly source files, several times. Thus this test
incorporates several thousand forks and temporary files.

We ran this test four times each with and without Race-
Guard. The results showed very little variation. The
averages of the four runs are shown in Table 2. In all
cases (real time, user time, and system time) the over-
head due to RaceGuard was always below 0.5%.

Note to program committee: for
the final paper, we plan to also
benchmark an Apache web server

Table 1: RaceGuard Microbenchmark Results

System Call Without RaceGuard With RaceGuard % Overhead
Stat non-existent file 4.3 microseconds 8.8 microseconds 104%
Open non-existent file 1.5 milliseconds 1.44 milliseconds -4%
Fork 161 microseconds 183 microseconds 13%

1. After the venerable Dhrystone integer performance
benchmark [16], which in turn is a reference to the
Whetstone floating point benchmark.

Table 2: Khernelstone Macrobenchmark, in Seconds

Real Time User Time System Time
Without RaceGuard 10,700 8838 901
With RaceGuard 10,742 8858 904
%Overhead 0.4% 0.2% 0.3%

under Webstone. While this does
not make heavy use of temp
files, it does do a lot of fork-
ing and stating, and is less
compute-intensive than compil-
ing.

7 Related Work
The study of temporary file race vulnerabilities is old:
Abbott et al [1] and then Bisbey & Hollingsworth [4]
described them as a subclass of timing or synchroniza-
tion flaws. Yet despite the depth of past study of this
problem, a practical solution is apparently still needed:
temporary file race vulnerabilities were found in core
Internet infrastructure tools such as Apache in 2001
[12].

Bishop’s seminal paper [5] formally defined the notion
of a TOCTTOU (Time Of Check To Time Of Use) error
as being two sequential events in which the second
depends on the first, and that there is a faulty assump-
tion that results from the first operation will persist to
the second operation. Bishop presents a partial solution
to TOCTTOU vulnerabilities in the form of a program
scanning program to detect some potential TOCTTOU
vulnerabilities in C code, but also presents theorems
showing that detecting statically TOCTTOU flaws is
undecidable.

Bishop discusses the possibility of a run-time TOCT-
TOU detector that modifies system call interfaces to
track the arguments to system calls, and the association
of file descriptors and names, abstractly similar to Race-
Guard. Bishop does not elaborate this proposal due to
performance concerns. RaceGuard overcomes these per-
formance difficulties by narrowing the scope and dura-
tion of the information to be tracked, showing that near
precise file system race attacks can be detected at run
time with very low performance costs.

“Solar Designer” [11] takes a different approach to
combating temporary file race vulnerabilities. Rather
than attacking the “race” aspect, the Openwall enhance-
ment to the Linux kernel attacks the propensity for priv-
ileged programs to follow symbolic links. Under
Openwall, programs that are SUID root will not fol-
low symbolic links in which the sticky bit is set, e.g. /
tmp. The “SUID” part is based on the observation that
attackers exploiting temporary file race vulnerabilities
most often do so by re-running a SUID program many
times, hoping to win the race just once. This is easier to
accomplish with a SUID root program than a root

daemon that the administrator must re-start. The “sticky
bit” part is intended to minimize the compatibility prob-
lems imposed by this approach, in that symbolic links
are useful, and temporary files are largely created in the
/tmp file system.

While effective in many cases, this approach unfortu-
nately gets mixed results. Some programs (wrongly)
create temporary files in other file systems, e.g. the cur-
rent working directory. We have also observed real pro-
grams that insist on using symbolic links in the /tmp
file system, e.g. the Courier mail server [15] which uses
symbolic links in /tmp to optimize the order of mail
delivery.

8 Conclusions
Temporary file race vulnerabilities have been a perva-
sive security problem for over a decade. There are safe
methods to create temporary files, but they are not por-
table, and thus common programs continue to use vul-
nerable-but-portable temporary file methods such as
mktemp. RaceGuard protects vulnerable programs
against this problem, even if the program insists on
using unsafe means, and regardless of whether the pro-
gram is using an unsafe library, or “rolled their own”
unsafe temporary file creation method. We have shown
that RaceGuard is effective in stopping attacks, and
imposes minimal compatibility and performance over-
head. RaceGuard is available as a GPL’d patch to the
Linux kernel, and is incorporated into WireX’s Immu-
nix server products.

References
[1] R.P. Abbott, J.S. Chin, J.E. Donnelley, W.L.

Konigsford, S. Tokubo, and D.A. Webb. Security
Analysis and Enhancements of Computer
Operating Systems. NSBIR 76-1041, National
Bureau of Standards, April 1976.

[2] Brian Behlendorf, Roy T. Fielding, Rob Hartill,
David Robinson, Cliff Skolnick, Randy Terbush,
Robert S. Thau, and Andrew Wilson. Apache
HTTP Server Project. http://
www.apache.org.

[3] Brian Berliner, david d ‘zoo’ zuhn, Jeff Polk, and
et al. Concurrent Versions System. http://
www.cyclic.com/, 1999.

[4] R. Bisbey and D. Hollingsworth. Protection
Analysis Project Final Report. Technical Report
ISI/RR–78-13, USC/Information Sciences
Institute, May 1978. DTICAD A 056816.

[5] M. Bishop and M. Digler. Checking for Race
Conditions in File Accesses. Computing Systems,
9(2):131–152, Spring 1996. Also available at

http://olympus.cs.ucdavis.edu/
bishop/scriv/index.html.

[6] Crispin Cowan, Matt Barringer, Steve Beattie,
Greg Kroah-Hartman, Mike Frantzen, and Jamie
Lokier. FormatGuard: Automatic Protection From
printf Format String Vulnerabilities. Submitted for
review, February 2001.

[7] Crispin Cowan, Steve Beattie, Ryan Finnin Day,
Calton Pu, Perry Wagle, and Erik Walthinsen.
Protecting Systems from Stack Smashing Attacks
with StackGuard. In Linux Expo, Raleigh, NC, May
1999.

[8] Crispin Cowan, Steve Beattie, Calton Pu, Perry
Wagle, and Virgil Gligor. SubDomain:
Parsimonious Server Security. In USENIX 14th
Systems Administration Conference (LISA), New
Orleans, LA, December 2000.

[9] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, and Qian Zhang. StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In 7th USENIX Security
Conference, pages 63–77, San Antonio, TX,
January 1998.

[10] Crispin Cowan, Perry Wagle, Calton Pu, Steve
Beattie, and Jonathan Walpole. Buffer Overflows:
Attacks and Defenses for the Vulnerability of the
Decade. In DARPA Information Survivability
Conference and Expo (DISCEX), January 2000.
Also presented as an invited talk at SANS 2000,
March 23-26, 2000, Orlando, FL, http://
schafercorp-ballston.com/discex.

[11] “Solar Designer”. Root Programs and Links.
http://www.openwall.com/linux/.

[12] Greg Kroah-Hartman. Immunix OS Security
update for lots of temp file problems. Bugtraq
mailing list, http://
www.securityfocus.com/archive/1/
155417, January 10 2001.

[13] Jerome H. Saltzer and Michael D. Schroeder. The
Protection of Information in Computer Systems.
Proceedings of the IEEE, 63(9), November 1975.

[14] Securityfocus.com. Vulnerability Search. http:/
/search.securityfocus.com/
search.html, 1997-2001.

[15] Sam Varshavchik. Courier Mail Transfer Agent.
http://www.courier-mta.org/, 1999.

[16] Reinhold P. Weicker. Dhrystone: A Synthetic
Systems Programming Benchmark.
Communications of the ACM, 27(10):1013–1030,
October 1984.

